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Higgs discovery

• Obviously a major advance in our 
understanding of electroweak symmetry 
breaking.

• A weakly coupled Higgs scalar appears to 
be responsible for electroweak symmetry 
breaking

• Serves to sharpen the naturalness question.
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One possibility

• The Higgs boson is actually a composite 
field.

• If there is strong dynamics with a Global 
symmetry  G down to a subgroup H, the 
Higgs boson can be one of (a number of?) 
pseudo Nambu-Goldstone boson(s) of the 
breaking. 
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Little Higgs Models
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Abstrac
t

We construct an SU(6)/S
p(6)

non-linear sigm
a model in which the Higgse

s arise
as pseudo-

Goldstone boson
s. There are two Higgs

doublets whose masses
have no one-loop quadratic

sensi-

tivity to the cutoff of the effectiv
e theory,

which can be at arou
nd 10 TeV. The Higgs

potential is

generate
d by gauge and Yukawa interac

tions, and is distin
ctly

different from
that of the minimal

supersymmetric
standard model. At the TeV scale

, the new boson
ic degree

s of freed
om are a single

neutral
complex scala

r and a secon
d copy of SU(2) ×

U(1) gauge boson
s. Addition

al vecto
r-like

pairs
of color

ed ferm
ions are also

presen
t.
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Abstract: We present an economical theory of natural electroweak symmetry breaking,

generalizing an approach based on deconstruction. This theory is the smallest extension

of the Standard Model to date that stabilizes the electroweak scale with a naturally light

Higgs and weakly coupled new physics at TeV energies. The Higgs is one of a set of pseudo

Goldstone bosons in an SU(5)/SO(5) nonlinear sigma model. The symmetry breaking scale f

is around a TeV, with the cutoff Λ<∼ 4πf ∼ 10 TeV. A single electroweak doublet, the “little

Higgs”, is automatically much lighter than the other pseudo Goldstone bosons. The quartic

self-coupling for the little Higgs is generated by the gauge and Yukawa interactions with a

natural size O(g2,λ2
t ), while the top Yukawa coupling generates a negative mass squared

triggering electroweak symmetry breaking. Beneath the TeV scale the effective theory is

simply the minimal Standard Model. The new particle content at TeV energies consists of

one set of spin one bosons with the same quantum numbers as the electroweak gauge bosons,

an electroweak singlet quark with charge 2/3, and an electroweak triplet scalar. One loop

quadratically divergent corrections to the Higgs mass are cancelled by interactions with these

additional particles.
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Little Higgs and Custodial SU(2)

Spencer Chang and Jay G. Wacker
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Cambridge, MA 02138

Abstract

In this note we present a little Higgs model that has custodial SU(2) as an approx-
imate symmetry. This theory is a simple modification of the “Minimal Moose” with
SO(5) global symmetries protecting the Higgs mass. This allows for a simple limit
where TeV physics makes small contributions to precision electroweak observables.
The spectrum of particles and their couplings to Standard Model fields are studied in
detail. At low energies this model has two Higgs doublets and it favours a light Higgs
from precision electroweak bounds, though for different reasons than in the Standard
Model. The limit on the breaking scale, f , is roughly 700 GeV, with a top partner of
2 TeV, W ′ and B′ of 2.5 TeV, and heavy Higgs partners of 2 TeV. These particles are
easily accessible at hadron colliders.
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Abstract

While little Higgs models provide an interesting way to address the hierarchy problem,
concrete models in the literature typically face two major obstacles. First, the mechanism
for generating a Higgs quartic coupling often leads to large violations of custodial symmetry.
Second, there is a tension between precision electroweak observables in the gauge sector and
fine-tuning in the top sector. In this work, we present a new little Higgs model which solves
both of these problems. The model is based on an SO(6) ⇥SO(6)/SO(6) coset space which
has custodial symmetry built in. The Higgs quartic coupling takes a particularly simple form
and does not su↵er from the “dangerous singlet” pathology. We introduce a gauge breaking
module which decouples the mass of gauge partners from the mass of top partners, allowing
for natural electroweak symmetry breaking. The collider phenomenology is dominated by
production and decay of the top partners, which are considerably lighter than in traditional
little Higgs theories.
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The Little Higgs from a Simple Group

D.E. Kaplan a∗ and M. Schmaltz b†

a Department of Physics and Astronomy,

Johns Hopkins University, Baltimore, MD 21218

b Physics Department, Boston University, Boston, MA 02215

February 1, 2008
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Abstract

We present a model of electroweak symmetry breaking in which the Higgs boson is a
pseudo-Nambu-Goldstone boson. By embedding the standard models SU(2)×U(1) into
an SU(4) × U(1) gauge group, one-loop quadratic divergences to the Higgs mass from
gauge and top loops are canceled automatically with the minimal particle content. The
potential contains a Higgs quartic coupling which does not introduce one-loop quadratic
divergences. Our theory is weakly coupled at the electroweak scale, it has new weakly
coupled particles at the TeV scale and a cutoff above 10 TeV, all without fine tuning.
We discuss the spectrum of the model and estimate the constraints from electroweak
precision measurements.
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Outline

• Review of Little Higgs

• Model Building lessons:

• Exotic Tops?

• Dangerous Singlets

• Extra Scalars

• Heavy Top Decays to Scalars (T to b H+)
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• Generate a quartic for the Higgs without 
introducing quadratic divergence.

• The SM top quadratic divergences are 
cancelled via diagrams with a top partner 
loop

• Signal of goldstone nature of Higgs, and 
collective breaking.

Little Higgs
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h
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h
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t

h
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h h

T
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Figure 2: One-loop contributions to the Higgs boson (mass)2 in the Little Higgs model.

The quadratic divergences neatly cancel. The top sector contribution to the Higgs
(mass)2 is then given by

∆m2
h = −3

λ2
1λ

2
2f

2

8π2
log

Λ2

m2
T

= −3
λ2

tm
2
T

8π2
log

Λ2

m2
T

, (9)

where Λ ∼ 4πf is the strong interaction scale of the theory that gives rise to the
Goldstone bosons. In Little Higgs models, f is typically taken to be of order 1 TeV
(corresponding to Λ ∼ 10 TeV) to avoid fine tuning of the Higgs mass. As long as mT

is parametrically lower than Λ, the negative contribution to m2
h in Equation (9) could

be the dominant one and thus would provide the explanation for why electroweak
symmetry is broken. There are incalculable (quadratically divergent) two-loop con-
tributions to m2

h, which are the same order in λ1λ2, but these are not logarithmically
enhanced, and so are sub-dominant. The situation is that typically found in chiral
perturbation theory.

The cancellation of quadratic divergences in Equation (8) depends on the relation
of Equation (6), which can be rewritten as

mT

f
=
λ2

t + λ2
T

λT
. (10)

The relation (10) is a very interesting one. All of the four parameters in this equation
are in principle measurable. The top quark Yukawa coupling is known. The decay
constant f can be determined by measuring the properties of the heavy vector bosons
in the Little Higgs theory [25]. The mass and couplings of the heavy top quark will
be measured when this quark is observed, perhaps at the LHC. If the relation (10) is
shown to be valid, that will be strong evidence for the picture of electroweak symmetry
breaking given by the Little Higgs model.

6

Arkani-Hamed, et al. 
hep-ph/0105239, hep-ph/0202089, hep-ph/0206020, hep-ph/0206021
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Top Sector: Little Higgs 
Review

t or T to denote mass eigenstates. Then, the third-generation weak doublet will be
(u, b)L, the new left-handed weak singlet will be UL, and the two right-handed weak
singlets of the model will be uR, UR. We will identify the t and T states momentarily.

A key feature of the Little Higgs construction is the presence of global symmetries
which protect the Higgs boson mass against quadratically divergent radiative correc-
tions at one-loop. The Higgs boson couplings to quarks should preserve this feature.
As a demonstration of how this could work, we introduce an SU(3) global symmetry.
Let V be an SU(3) unitary matrix, depending on Goldstone boson fields πa as

V = exp[2iπata/f ] , (1)

where f is a “pion decay constant” with the dimensions of mass and ta is an SU(3)
generator, normalized to tr[tatb] = 1

2δ
ab. We will identify the Higgs doublet H ≡

(h+iπ3, −
√

2π−)T with the SU(2) doublet components of the Goldstone boson matrix
Π ≡ πata:

2iΠ =
1√
2

(

Φ H
−H† φ

)

. (2)

Φ and φ are other members of the Goldstone multiplet that we need not concern
ourselves with at this point. Let χL be the ‘royal’ SU(3) triplet (u, b, U)L [29]. These
fields can be coupled by writing [3,4]

L = −λ1f uRV3iχLi − λ2f URUL + h.c. (3)

The first term of this Lagrangian has an SU(3) global symmetry

V3i → V3jΛ
†
ji, χL → ΛχL . (4)

This symmetry is spontaneously broken. To the extent that this SU(3) is an exact
symmetry of the Lagrangian, the Goldstone boson fields, πa, must remain mass-
less. The second term in (3) explicitly breaks the SU(3) symmetry to SU(2) and
specifically breaks the symmetries responsible for keeping H and H† in (2) massless.
However, the Higgs boson field does not enter this term directly. This means that H
can obtain mass only from loop diagrams, and only at a level at which the couplings
λ1 and λ2 both enter. In [3], it is shown that this restriction prohibits the appearance
of one-loop quadratic divergences in the Higgs boson mass. The one-loop radiative
contribution to the Higgs (mass)2 is only logarithmically divergent, and can thus be
reliably estimated. This contribution turns out to be negative [3], giving an explicit
mechanism of electroweak symmetry breaking.

Let us review both aspects of the calculation. We expand about the symmetric
point, 〈h〉 = 0. At this point, uL remains massless, while UL combines with one linear
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4

Introduce an SU(3) of Goldstones.  
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Little Higgs and Top 
Sector

http://arxiv.org/pdf/hep-ph/0310039.pdf
Perelstein, Peskin, Pierce
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t or T to denote mass eigenstates. Then, the third-generation weak doublet will be
(u, b)L, the new left-handed weak singlet will be UL, and the two right-handed weak
singlets of the model will be uR, UR. We will identify the t and T states momentarily.

A key feature of the Little Higgs construction is the presence of global symmetries
which protect the Higgs boson mass against quadratically divergent radiative correc-
tions at one-loop. The Higgs boson couplings to quarks should preserve this feature.
As a demonstration of how this could work, we introduce an SU(3) global symmetry.
Let V be an SU(3) unitary matrix, depending on Goldstone boson fields πa as

V = exp[2iπata/f ] , (1)

where f is a “pion decay constant” with the dimensions of mass and ta is an SU(3)
generator, normalized to tr[tatb] = 1
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2π−)T with the SU(2) doublet components of the Goldstone boson matrix
Π ≡ πata:

2iΠ =
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(
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Φ and φ are other members of the Goldstone multiplet that we need not concern
ourselves with at this point. Let χL be the ‘royal’ SU(3) triplet (u, b, U)L [29]. These
fields can be coupled by writing [3,4]

L = −λ1f uRV3iχLi − λ2f URUL + h.c. (3)

The first term of this Lagrangian has an SU(3) global symmetry

V3i → V3jΛ
†
ji, χL → ΛχL . (4)

This symmetry is spontaneously broken. To the extent that this SU(3) is an exact
symmetry of the Lagrangian, the Goldstone boson fields, πa, must remain mass-
less. The second term in (3) explicitly breaks the SU(3) symmetry to SU(2) and
specifically breaks the symmetries responsible for keeping H and H† in (2) massless.
However, the Higgs boson field does not enter this term directly. This means that H
can obtain mass only from loop diagrams, and only at a level at which the couplings
λ1 and λ2 both enter. In [3], it is shown that this restriction prohibits the appearance
of one-loop quadratic divergences in the Higgs boson mass. The one-loop radiative
contribution to the Higgs (mass)2 is only logarithmically divergent, and can thus be
reliably estimated. This contribution turns out to be negative [3], giving an explicit
mechanism of electroweak symmetry breaking.

Let us review both aspects of the calculation. We expand about the symmetric
point, 〈h〉 = 0. At this point, uL remains massless, while UL combines with one linear

4

cf. Dobrescu and Hill  
top color
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�L =

0

@
u
b
U

1

A

L

t or T to denote mass eigenstates. Then, the third-generation weak doublet will be
(u, b)L, the new left-handed weak singlet will be UL, and the two right-handed weak
singlets of the model will be uR, UR. We will identify the t and T states momentarily.

A key feature of the Little Higgs construction is the presence of global symmetries
which protect the Higgs boson mass against quadratically divergent radiative correc-
tions at one-loop. The Higgs boson couplings to quarks should preserve this feature.
As a demonstration of how this could work, we introduce an SU(3) global symmetry.
Let V be an SU(3) unitary matrix, depending on Goldstone boson fields πa as

V = exp[2iπata/f ] , (1)

where f is a “pion decay constant” with the dimensions of mass and ta is an SU(3)
generator, normalized to tr[tatb] = 1

2δ
ab. We will identify the Higgs doublet H ≡

(h+iπ3, −
√

2π−)T with the SU(2) doublet components of the Goldstone boson matrix
Π ≡ πata:

2iΠ =
1√
2

(

Φ H
−H† φ

)

. (2)

Φ and φ are other members of the Goldstone multiplet that we need not concern
ourselves with at this point. Let χL be the ‘royal’ SU(3) triplet (u, b, U)L [29]. These
fields can be coupled by writing [3,4]

L = −λ1f uRV3iχLi − λ2f URUL + h.c. (3)

The first term of this Lagrangian has an SU(3) global symmetry

V3i → V3jΛ
†
ji, χL → ΛχL . (4)

This symmetry is spontaneously broken. To the extent that this SU(3) is an exact
symmetry of the Lagrangian, the Goldstone boson fields, πa, must remain mass-
less. The second term in (3) explicitly breaks the SU(3) symmetry to SU(2) and
specifically breaks the symmetries responsible for keeping H and H† in (2) massless.
However, the Higgs boson field does not enter this term directly. This means that H
can obtain mass only from loop diagrams, and only at a level at which the couplings
λ1 and λ2 both enter. In [3], it is shown that this restriction prohibits the appearance
of one-loop quadratic divergences in the Higgs boson mass. The one-loop radiative
contribution to the Higgs (mass)2 is only logarithmically divergent, and can thus be
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mechanism of electroweak symmetry breaking.

Let us review both aspects of the calculation. We expand about the symmetric
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cf. Dobrescu and Hill  
top color

Breaks symmetry, 
but no Higgs

Preserves the 
SU(3)
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Expected decays

T ! th

T ! bW

T ! tZ

Goldstone Equivalence 
suggests 1:2:1
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Fairly recent LHC 
Exclusion (T to bW)
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Figure 3: Observed (solid line) and expected (dashed line)
95% CL upper limits on the t′ t̄′ cross section as a function
of the t′ quark mass. The surrounding shaded bands cor-
respond to the ±1 and ±2 standard deviations around the
expected limit. The thin red line and band show the theo-
retical prediction and its ±1 standard deviation uncertainty.
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Figure 4: Observed (red filled area) and expected (red
dashed line) 95% CL exclusion in the plane of BR(t′ → Wb)
versus BR(t′ → Ht), for different values of the vector-like t′

quark mass. The grey (dark shaded) area corresponds to the
unphysical region where the sum of branching ratios exceeds
unity. The default branching ratio values from the Pro-
tos event generator for the weak-isospin singlet and doublet
cases are shown as plain circle and star symbols, respectively.
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Figure 4: Observed (red filled area) and expected (red
dashed line) 95% CL exclusion in the plane of BR(t′ → Wb)
versus BR(t′ → Ht), for different values of the vector-like t′

quark mass. The grey (dark shaded) area corresponds to the
unphysical region where the sum of branching ratios exceeds
unity. The default branching ratio values from the Pro-
tos event generator for the weak-isospin singlet and doublet
cases are shown as plain circle and star symbols, respectively.
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More on top partners

See Katz, Nelson, Walker, Lee; 
Thaler, Schmaltz, Stolarski,

see-saw [34, 35]. Explicitly, the fields X, X̄ , contain components q̃, t̃, p, p̄, ¯̃t, ¯̃q, transforming

under SU(3)c × SU(2)′ × SU(2) × U(1)y as

SU(3)c SU(2)′ SU(2) U(1)Y
p 3 1 2 7/6

X t̃ 3 1 1 2/3

q̃ 3 2 1 1/6
¯̃q 3̄ 1 2 -1/6

X̄ ¯̃t 3̄ 1 1 -2/3

p̄ 3̄ 2 1 -7/6

Charged 2/3 Vector-Like Quark Content

We break the SU(5) symmetry only through explicit fermion mass terms connecting the Q

and T̄ to the components of X, X̄ with the appropriate quantum numbers. The top Yukawa

coupling arises from

Lt = λ1fX̄Σ†X + λ2f ¯̃qQ + λ3fT̄ t̃ + h.c. (2.11)

Because all three terms are needed to entirely break all the symmetry protecting the little

Higgs mass, this form of symmetry breaking is soft enough to avoid quadratic or logarithmic

divergences at one loop, or quadratic divergences at two loops. Thus at one loop, the largest

radiative corrections to the Higgs potential are insensitive to the UV and computable in the

low energy effective theory.

To see that Lt generates a top Yukawa coupling we expand Lt to first order in the Higgs

h:

Lt ⊃ λ1
¯̃tq̃h + f(λ1

¯̃t + λ3T̄ )t̃ + f ¯̃q(λ1q̃ + λ2Q) + · · · . (2.12)

Clearly t̃ marries the linear combination (λ1
¯̃t+λ3T̄ )/(λ2

1+λ2
3)

1/2 to become massive, ¯̃q marries

the linear combination (λ1q̃ + λ2Q)/(λ2
1 + λ2

2)
1/2, and p pairs up with p̄. We can integrate

out these heavy quarks. The remaining light combinations are q3, the left handed doublet

comprised mostly of top and bottom,

q3 ≡
(λ2q̃ − λ1Q)
√

λ2
1 + λ2

2

, (2.13)

and t̄, the left handed quark which is mostly anti-top,

t̄ ≡
(λ3

¯̃t − λ1T̄ )
√

λ2
1 + λ2

3

, (2.14)

with a Yukawa coupling to the little Higgs

λt ht̄q3 + h.c. where λt =
λ1λ2λ3

√

λ2
1 + λ2

2

√

λ2
1 + λ2

3

. (2.15)

5

see-saw [34, 35]. Explicitly, the fields X, X̄ , contain components q̃, t̃, p, p̄, ¯̃t, ¯̃q, transforming

under SU(3)c × SU(2)′ × SU(2) × U(1)y as

SU(3)c SU(2)′ SU(2) U(1)Y
p 3 1 2 7/6

X t̃ 3 1 1 2/3

q̃ 3 2 1 1/6
¯̃q 3̄ 1 2 -1/6

X̄ ¯̃t 3̄ 1 1 -2/3

p̄ 3̄ 2 1 -7/6

Charged 2/3 Vector-Like Quark Content

We break the SU(5) symmetry only through explicit fermion mass terms connecting the Q

and T̄ to the components of X, X̄ with the appropriate quantum numbers. The top Yukawa

coupling arises from

Lt = λ1fX̄Σ†X + λ2f ¯̃qQ + λ3fT̄ t̃ + h.c. (2.11)

Because all three terms are needed to entirely break all the symmetry protecting the little

Higgs mass, this form of symmetry breaking is soft enough to avoid quadratic or logarithmic

divergences at one loop, or quadratic divergences at two loops. Thus at one loop, the largest

radiative corrections to the Higgs potential are insensitive to the UV and computable in the

low energy effective theory.

To see that Lt generates a top Yukawa coupling we expand Lt to first order in the Higgs

h:

Lt ⊃ λ1
¯̃tq̃h + f(λ1

¯̃t + λ3T̄ )t̃ + f ¯̃q(λ1q̃ + λ2Q) + · · · . (2.12)

Clearly t̃ marries the linear combination (λ1
¯̃t+λ3T̄ )/(λ2

1+λ2
3)

1/2 to become massive, ¯̃q marries

the linear combination (λ1q̃ + λ2Q)/(λ2
1 + λ2

2)
1/2, and p pairs up with p̄. We can integrate

out these heavy quarks. The remaining light combinations are q3, the left handed doublet

comprised mostly of top and bottom,

q3 ≡
(λ2q̃ − λ1Q)
√

λ2
1 + λ2

2

, (2.13)

and t̄, the left handed quark which is mostly anti-top,

t̄ ≡
(λ3

¯̃t − λ1T̄ )
√

λ2
1 + λ2

3

, (2.14)

with a Yukawa coupling to the little Higgs

λt ht̄q3 + h.c. where λt =
λ1λ2λ3

√

λ2
1 + λ2

2

√

λ2
1 + λ2

3

. (2.15)
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G Symmetric
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What does this do?

see-saw [34, 35]. Explicitly, the fields X, X̄ , contain components q̃, t̃, p, p̄, ¯̃t, ¯̃q, transforming

under SU(3)c × SU(2)′ × SU(2) × U(1)y as

SU(3)c SU(2)′ SU(2) U(1)Y
p 3 1 2 7/6

X t̃ 3 1 1 2/3

q̃ 3 2 1 1/6
¯̃q 3̄ 1 2 -1/6

X̄ ¯̃t 3̄ 1 1 -2/3

p̄ 3̄ 2 1 -7/6

Charged 2/3 Vector-Like Quark Content

We break the SU(5) symmetry only through explicit fermion mass terms connecting the Q

and T̄ to the components of X, X̄ with the appropriate quantum numbers. The top Yukawa

coupling arises from

Lt = λ1fX̄Σ†X + λ2f ¯̃qQ + λ3fT̄ t̃ + h.c. (2.11)

Because all three terms are needed to entirely break all the symmetry protecting the little

Higgs mass, this form of symmetry breaking is soft enough to avoid quadratic or logarithmic

divergences at one loop, or quadratic divergences at two loops. Thus at one loop, the largest

radiative corrections to the Higgs potential are insensitive to the UV and computable in the

low energy effective theory.

To see that Lt generates a top Yukawa coupling we expand Lt to first order in the Higgs

h:

Lt ⊃ λ1
¯̃tq̃h + f(λ1

¯̃t + λ3T̄ )t̃ + f ¯̃q(λ1q̃ + λ2Q) + · · · . (2.12)

Clearly t̃ marries the linear combination (λ1
¯̃t+λ3T̄ )/(λ2

1+λ2
3)

1/2 to become massive, ¯̃q marries

the linear combination (λ1q̃ + λ2Q)/(λ2
1 + λ2

2)
1/2, and p pairs up with p̄. We can integrate

out these heavy quarks. The remaining light combinations are q3, the left handed doublet

comprised mostly of top and bottom,

q3 ≡
(λ2q̃ − λ1Q)
√

λ2
1 + λ2

2

, (2.13)

and t̄, the left handed quark which is mostly anti-top,

t̄ ≡
(λ3

¯̃t − λ1T̄ )
√

λ2
1 + λ2

3

, (2.14)

with a Yukawa coupling to the little Higgs

λt ht̄q3 + h.c. where λt =
λ1λ2λ3

√

λ2
1 + λ2

2

√

λ2
1 + λ2

3

. (2.15)
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see-saw [34, 35]. Explicitly, the fields X, X̄ , contain components q̃, t̃, p, p̄, ¯̃t, ¯̃q, transforming

under SU(3)c × SU(2)′ × SU(2) × U(1)y as

SU(3)c SU(2)′ SU(2) U(1)Y
p 3 1 2 7/6

X t̃ 3 1 1 2/3

q̃ 3 2 1 1/6
¯̃q 3̄ 1 2 -1/6

X̄ ¯̃t 3̄ 1 1 -2/3

p̄ 3̄ 2 1 -7/6

Charged 2/3 Vector-Like Quark Content

We break the SU(5) symmetry only through explicit fermion mass terms connecting the Q

and T̄ to the components of X, X̄ with the appropriate quantum numbers. The top Yukawa

coupling arises from

Lt = λ1fX̄Σ†X + λ2f ¯̃qQ + λ3fT̄ t̃ + h.c. (2.11)

Because all three terms are needed to entirely break all the symmetry protecting the little

Higgs mass, this form of symmetry breaking is soft enough to avoid quadratic or logarithmic

divergences at one loop, or quadratic divergences at two loops. Thus at one loop, the largest

radiative corrections to the Higgs potential are insensitive to the UV and computable in the

low energy effective theory.

To see that Lt generates a top Yukawa coupling we expand Lt to first order in the Higgs

h:

Lt ⊃ λ1
¯̃tq̃h + f(λ1

¯̃t + λ3T̄ )t̃ + f ¯̃q(λ1q̃ + λ2Q) + · · · . (2.12)

Clearly t̃ marries the linear combination (λ1
¯̃t+λ3T̄ )/(λ2

1+λ2
3)

1/2 to become massive, ¯̃q marries

the linear combination (λ1q̃ + λ2Q)/(λ2
1 + λ2

2)
1/2, and p pairs up with p̄. We can integrate

out these heavy quarks. The remaining light combinations are q3, the left handed doublet

comprised mostly of top and bottom,

q3 ≡
(λ2q̃ − λ1Q)
√

λ2
1 + λ2

2

, (2.13)

and t̄, the left handed quark which is mostly anti-top,

t̄ ≡
(λ3

¯̃t − λ1T̄ )
√

λ2
1 + λ2

3

, (2.14)

with a Yukawa coupling to the little Higgs

λt ht̄q3 + h.c. where λt =
λ1λ2λ3

√

λ2
1 + λ2

2

√

λ2
1 + λ2

3

. (2.15)
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Two heavy guys: 

see-saw [34, 35]. Explicitly, the fields X, X̄ , contain components q̃, t̃, p, p̄, ¯̃t, ¯̃q, transforming

under SU(3)c × SU(2)′ × SU(2) × U(1)y as

SU(3)c SU(2)′ SU(2) U(1)Y
p 3 1 2 7/6

X t̃ 3 1 1 2/3

q̃ 3 2 1 1/6
¯̃q 3̄ 1 2 -1/6

X̄ ¯̃t 3̄ 1 1 -2/3

p̄ 3̄ 2 1 -7/6

Charged 2/3 Vector-Like Quark Content

We break the SU(5) symmetry only through explicit fermion mass terms connecting the Q

and T̄ to the components of X, X̄ with the appropriate quantum numbers. The top Yukawa

coupling arises from

Lt = λ1fX̄Σ†X + λ2f ¯̃qQ + λ3fT̄ t̃ + h.c. (2.11)

Because all three terms are needed to entirely break all the symmetry protecting the little

Higgs mass, this form of symmetry breaking is soft enough to avoid quadratic or logarithmic

divergences at one loop, or quadratic divergences at two loops. Thus at one loop, the largest

radiative corrections to the Higgs potential are insensitive to the UV and computable in the

low energy effective theory.

To see that Lt generates a top Yukawa coupling we expand Lt to first order in the Higgs

h:

Lt ⊃ λ1
¯̃tq̃h + f(λ1

¯̃t + λ3T̄ )t̃ + f ¯̃q(λ1q̃ + λ2Q) + · · · . (2.12)

Clearly t̃ marries the linear combination (λ1
¯̃t+λ3T̄ )/(λ2

1+λ2
3)

1/2 to become massive, ¯̃q marries

the linear combination (λ1q̃ + λ2Q)/(λ2
1 + λ2

2)
1/2, and p pairs up with p̄. We can integrate

out these heavy quarks. The remaining light combinations are q3, the left handed doublet

comprised mostly of top and bottom,

q3 ≡
(λ2q̃ − λ1Q)
√

λ2
1 + λ2

2

, (2.13)

and t̄, the left handed quark which is mostly anti-top,

t̄ ≡
(λ3

¯̃t − λ1T̄ )
√

λ2
1 + λ2

3

, (2.14)

with a Yukawa coupling to the little Higgs

λt ht̄q3 + h.c. where λt =
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see-saw [34, 35]. Explicitly, the fields X, X̄ , contain components q̃, t̃, p, p̄, ¯̃t, ¯̃q, transforming

under SU(3)c × SU(2)′ × SU(2) × U(1)y as

SU(3)c SU(2)′ SU(2) U(1)Y
p 3 1 2 7/6

X t̃ 3 1 1 2/3

q̃ 3 2 1 1/6
¯̃q 3̄ 1 2 -1/6

X̄ ¯̃t 3̄ 1 1 -2/3

p̄ 3̄ 2 1 -7/6

Charged 2/3 Vector-Like Quark Content

We break the SU(5) symmetry only through explicit fermion mass terms connecting the Q

and T̄ to the components of X, X̄ with the appropriate quantum numbers. The top Yukawa

coupling arises from

Lt = λ1fX̄Σ†X + λ2f ¯̃qQ + λ3fT̄ t̃ + h.c. (2.11)

Because all three terms are needed to entirely break all the symmetry protecting the little

Higgs mass, this form of symmetry breaking is soft enough to avoid quadratic or logarithmic

divergences at one loop, or quadratic divergences at two loops. Thus at one loop, the largest

radiative corrections to the Higgs potential are insensitive to the UV and computable in the

low energy effective theory.

To see that Lt generates a top Yukawa coupling we expand Lt to first order in the Higgs

h:

Lt ⊃ λ1
¯̃tq̃h + f(λ1

¯̃t + λ3T̄ )t̃ + f ¯̃q(λ1q̃ + λ2Q) + · · · . (2.12)

Clearly t̃ marries the linear combination (λ1
¯̃t+λ3T̄ )/(λ2

1+λ2
3)

1/2 to become massive, ¯̃q marries

the linear combination (λ1q̃ + λ2Q)/(λ2
1 + λ2

2)
1/2, and p pairs up with p̄. We can integrate

out these heavy quarks. The remaining light combinations are q3, the left handed doublet

comprised mostly of top and bottom,

q3 ≡
(λ2q̃ − λ1Q)
√

λ2
1 + λ2

2

, (2.13)

and t̄, the left handed quark which is mostly anti-top,

t̄ ≡
(λ3

¯̃t − λ1T̄ )
√

λ2
1 + λ2

3

, (2.14)

with a Yukawa coupling to the little Higgs

λt ht̄q3 + h.c. where λt =
λ1λ2λ3
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see-saw [34, 35]. Explicitly, the fields X, X̄ , contain components q̃, t̃, p, p̄, ¯̃t, ¯̃q, transforming

under SU(3)c × SU(2)′ × SU(2) × U(1)y as

SU(3)c SU(2)′ SU(2) U(1)Y
p 3 1 2 7/6

X t̃ 3 1 1 2/3

q̃ 3 2 1 1/6
¯̃q 3̄ 1 2 -1/6

X̄ ¯̃t 3̄ 1 1 -2/3

p̄ 3̄ 2 1 -7/6

Charged 2/3 Vector-Like Quark Content

We break the SU(5) symmetry only through explicit fermion mass terms connecting the Q

and T̄ to the components of X, X̄ with the appropriate quantum numbers. The top Yukawa

coupling arises from

Lt = λ1fX̄Σ†X + λ2f ¯̃qQ + λ3fT̄ t̃ + h.c. (2.11)

Because all three terms are needed to entirely break all the symmetry protecting the little

Higgs mass, this form of symmetry breaking is soft enough to avoid quadratic or logarithmic

divergences at one loop, or quadratic divergences at two loops. Thus at one loop, the largest

radiative corrections to the Higgs potential are insensitive to the UV and computable in the

low energy effective theory.

To see that Lt generates a top Yukawa coupling we expand Lt to first order in the Higgs

h:

Lt ⊃ λ1
¯̃tq̃h + f(λ1

¯̃t + λ3T̄ )t̃ + f ¯̃q(λ1q̃ + λ2Q) + · · · . (2.12)

Clearly t̃ marries the linear combination (λ1
¯̃t+λ3T̄ )/(λ2

1+λ2
3)

1/2 to become massive, ¯̃q marries

the linear combination (λ1q̃ + λ2Q)/(λ2
1 + λ2

2)
1/2, and p pairs up with p̄. We can integrate

out these heavy quarks. The remaining light combinations are q3, the left handed doublet

comprised mostly of top and bottom,

q3 ≡
(λ2q̃ − λ1Q)
√

λ2
1 + λ2

2

, (2.13)

and t̄, the left handed quark which is mostly anti-top,

t̄ ≡
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√

λ2
1 + λ2

3

, (2.14)
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What about p?
• It does not participate in the G breaking, so 

its mass remains at �1f
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Another Example

Godfrey, et al.  http://arxiv.org/pdf/1201.1951.pdf

While analytic forms can be found for the masses by expanding in powers of vEW/f ,

these forms lose validity for small values of the f parameter. Instead, more precise values

of the masses for these states can be found through numerical diagonalization of the square

of the fermion mass matrix. Additionally, in the region where y2 ≈ y3, the masses of T5

and T are degenerate at lowest order. Consequently, different diagonalization schemes are

required for the region where y2 ≈ y3 versus the region where |y2 − y3| > 0.

We quote the order (vEW/f)2 analytic forms of the masses for the case |y2 − y3| > 0

and f > v in Eq. 2.3. Since the higher order terms are significant for small values of f , our

numerical results do take these into account.

M2
t =

9y21y
2
2y

2
3v

2 sin2(β)

(y21 + y22)(y
2
1 + y23)

M2
T = (y21 + y22)f

2 +
9y21y

2
2y

2
3v

2 sin2(β)

(y21 + y22)(y
2
2 − y23)

M2
B = (y21 + y22)f

2 (2.3)

M2
T5

= (y21 + y23)f
2 −

9y21y
2
2y

2
3v

2 sin2(β)

(y21 + y23)(y
2
2 − y23)

M2
T6

= M2

T 2/3
b

= M2

T 5/3
b

= y21f
2

In Eq. 2.3, v2 = v2EW ≡ v21 + v22 and tan β ≡ v1/v2, where v1 and v2 are the vevs

acquired by h1 and h2, respectively, through electroweak symmetry breaking. Identifying

the top quark Yukawa coupling as yt = 3y1y2y3/
√

(y21 + y22)(y
2
1 + y23), reduces the number

of free parameters by one. This allows us to rewrite the three Yukawa couplings, y1, y2, y3 in

terms of the top quark Yukawa and two mixing angles, tan θ12 ≡ y1/y2 and tan θ13 ≡ y1/y3,

as defined in Eq. 2.4.

y1 =
yt

3 cos θ12 cos θ13

y2 =
yt

3 sin θ12 cos θ13
(2.4)

y3 =
yt

3 cos θ12 sin θ13

3 Constraints

A number of theoretical constraints on the heavy fermion masses exist. Heavy fermion loop

contributions to the Higgs potential and the lower bound on the Higgs boson mass from

LEP suggest that tan β ! 1 [11]. Avoiding fine tuning in the top sector gives an upper

– 3 –

the Bestest Little Higgs model are lower than those given by CMS, which assume BR(T →
bW ) = 1 and BR(T → tZ) = 1, due to the lower branching ratios. It may be possible to

enhance the search by combining results from multiple final states (bb̄W+W− + tt̄ZZ +

tb̄W−Z + bt̄W+Z). We also calculated the LO and NLO cross sections for single top

partner production and determined that the cross sections are higher than that of pair

production, particularly at heavy quark masses above approximately 500 GeV. We feel

that these channels are worthwhile for the LHC experiments to explore further.
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Morals (Top Partners)

• The states that do not participate directly in the 
collective breaking are the lightest.

• These can be “top friends” as described above

• Another example is the “custodial partners” if 
the fermions have an SU(2) x SU(2) symmetry.  

• Lowest states (first to be discovered?) are not 
the “cancellons”

• More freedom in their phenomenology...
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Corollary

• Fine-tuning is probably a bit worse than you 
think.

• Typically all Yukawas are sizable to 
reproduce the top Yukawa.

see-saw [34, 35]. Explicitly, the fields X, X̄ , contain components q̃, t̃, p, p̄, ¯̃t, ¯̃q, transforming

under SU(3)c × SU(2)′ × SU(2) × U(1)y as

SU(3)c SU(2)′ SU(2) U(1)Y
p 3 1 2 7/6

X t̃ 3 1 1 2/3

q̃ 3 2 1 1/6
¯̃q 3̄ 1 2 -1/6

X̄ ¯̃t 3̄ 1 1 -2/3

p̄ 3̄ 2 1 -7/6

Charged 2/3 Vector-Like Quark Content

We break the SU(5) symmetry only through explicit fermion mass terms connecting the Q

and T̄ to the components of X, X̄ with the appropriate quantum numbers. The top Yukawa

coupling arises from

Lt = λ1fX̄Σ†X + λ2f ¯̃qQ + λ3fT̄ t̃ + h.c. (2.11)

Because all three terms are needed to entirely break all the symmetry protecting the little

Higgs mass, this form of symmetry breaking is soft enough to avoid quadratic or logarithmic

divergences at one loop, or quadratic divergences at two loops. Thus at one loop, the largest

radiative corrections to the Higgs potential are insensitive to the UV and computable in the

low energy effective theory.

To see that Lt generates a top Yukawa coupling we expand Lt to first order in the Higgs

h:

Lt ⊃ λ1
¯̃tq̃h + f(λ1

¯̃t + λ3T̄ )t̃ + f ¯̃q(λ1q̃ + λ2Q) + · · · . (2.12)

Clearly t̃ marries the linear combination (λ1
¯̃t+λ3T̄ )/(λ2

1+λ2
3)

1/2 to become massive, ¯̃q marries

the linear combination (λ1q̃ + λ2Q)/(λ2
1 + λ2

2)
1/2, and p pairs up with p̄. We can integrate

out these heavy quarks. The remaining light combinations are q3, the left handed doublet

comprised mostly of top and bottom,

q3 ≡
(λ2q̃ − λ1Q)
√

λ2
1 + λ2

2

, (2.13)

and t̄, the left handed quark which is mostly anti-top,

t̄ ≡
(λ3

¯̃t − λ1T̄ )
√

λ2
1 + λ2

3

, (2.14)

with a Yukawa coupling to the little Higgs

λt ht̄q3 + h.c. where λt =
λ1λ2λ3

√

λ2
1 + λ2

2

√

λ2
1 + λ2

3

. (2.15)

5�1f
q

�2
1 + �2

2f

Lightest state Cancellon
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Collective Quartics

2

II. COLLECTIVE QUARTICS

How does one construct a Higgs quartic that does
not radiatively generate a quadratically-divergent Higgs
mass? In little Higgs theories, one finds a set of opera-
tors that each preserve di↵erent shift symmetries acting
on the Higgs doublet, but collectively break all the sym-
metries that protect the Higgs potential [1, 2, 3, 4, 5].
Since the quadratically-divergent diagrams only involve
one operator at a time, the shift symmetries are su�cient
to protect the Higgs mass parameter.

Concretely, in a non-linear sigma model where the
Higgs is a pseudo-Nambu-Goldstone boson (PNGB), one
näıvely expects the shift symmetry

h! h + ✏ + · · · (4)

to forbid any potential for the Higgs. But if there are
additional PNGBs � with compensating shifts

�! �⌥ h✏ + ✏h

f
+ · · · , (5)

then the two operators

V ⇠ �1f
2

����� +
h2

f
+ · · ·

����
2

+ �2f
2

������
h2

f
+ · · ·

����
2

(6)

each preserve one of the Higgs shift symmetries from
eq. (5). Taken alone, neither �i term would give a phys-
ical Higgs quartic since each individual quartic could be
removed by a �± ⌘ �±h2/f + · · · field redefinition. Col-
lectively, though, the two operators yield a Higgs quartic
after � is integrated out:

V ⇠ 4�1�2

�1 + �2
h4 + · · · . (7)

This is the form of all little Higgs quartics. A small Higgs
mass term is generated radiatively from eq. (6), and the
resulting potential allows for a parametric separation be-
tween the electroweak vev v and the decay constant f .

At this point, we have not specified the quantum num-
bers of the scalar �, which is equivalent to specifying the
quantum numbers of h2. The possible SU(2)L represen-
tations for h2 are determined by

2⌦ 2 = 3S ⌦ 1A, 2⌦ 2 = 3⌦ 1, (8)

where the S/A subscript refers to the representation be-
ing symmetric/antisymmetric under the interchange of
the two doublets. This classification holds regardless of
the number of Higgs fields.

In a one-Higgs doublet model, the 1A representation
vanishes, and � can be a complex triplet, a real triplet,
or a real singlet:

hihj ! �ij (3S), (9)

h†⌧ah! �a (3), (10)

h†h! ⌘ (1), (11)

where ⌧a are the Pauli matrices, and we use the notation
⌘ to refer to a real singlet that carries no other charges.
If � is a real or complex SU(2)L triplet, then eq. (6) gives
rise to a tree-level quartic coupling yet protects the Higgs
mass. A complex � triplet is used in the SU(5)/SO(5)
littlest Higgs [3], and a real � triplet is present in the
SO(9)/(SO(5)⇥SO(4)) construction [9] (though this lat-
ter model has a pathology that will be understood in the
next section).

However, if � is a real singlet ⌘, then explicit com-
putation shows that eq. (6) generates a quadratically-
divergent ⌘ tadpole and Higgs mass at one-loop! (For an
example, see the appendix.)

�1f⇤2

16⇡2

✓
⌘ +

h†h

f
+ · · ·

◆
� �2f⇤2

16⇡2

✓
⌘ � h†h

f
+ · · ·

◆
(12)

Note the sign di↵erence between the two terms, which
means that the Higgs mass term cannot be forbidden by
T -parity [3, 13, 14] with �1 = �2, and a parity that en-
forces �1 = ��2 would imply no Higgs quartic coupling
in the first place. Therefore, there is no viable one-Higgs
doublet little Higgs model where a collective quartic in-
volves a real singlet ⌘. In particular, this explains why
it is impossible to add a collective quartic coupling to
the simplest little Higgs [6] without extending the Higgs
sector [15].

The reason for this pathology is that the shift sym-
metry alone does not forbid a tadpole for ⌘. If ⌘ had
non-trivial quantum numbers (such as being an SU(2)L

triplet), then these extra symmetries would forbid the ⌘
tadpole. Famously, the singlet h†h cannot be charged
under any symmetry (except a shift symmetry), and the
same holds for the singlet ⌘. To illustrate this pathology
further, we construct an explicit singlet ⌘ model which re-
alizes the full non-linear shift symmetries in appendix A.

In a two-Higgs doublet model, one can have quartics
constructed not only with SU(2)L triplets but also with
singlets. Choosing conventions where h1 and h2 have the
same hypercharge, � can a priori be a complex singlet
with or without hypercharge:

hi
1h

j
2✏ij ! � (1A), (13)

h†1h2 ! � (1). (14)

Note however that the quartic constructed from the hy-
percharge carrying singlet |hi

1h
j
2✏ij |2 is unsatisfactory be-

cause it vanishes when the h1 and h2 vevs are aligned to
preserve electric charge. A hypercharge neutral complex
� is used in the SU(6)/Sp(6) antisymmetric condensate
model [8].

In addition, � can even be a real singlet as long as it
has an extra Z2 symmetry:

Re[h†1h2]! � (1). (15)

In this case, the symmetry

�! ��, h1 ! �h1, h2 ! h2 (16)
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näıvely expects the shift symmetry

h! h + ✏ + · · · (4)

to forbid any potential for the Higgs. But if there are
additional PNGBs � with compensating shifts

�! �⌥ h✏ + ✏h

f
+ · · · , (5)

then the two operators

V ⇠ �1f
2

����� +
h2

f
+ · · ·

����
2

+ �2f
2

������
h2

f
+ · · ·

����
2

(6)

each preserve one of the Higgs shift symmetries from
eq. (5). Taken alone, neither �i term would give a phys-
ical Higgs quartic since each individual quartic could be
removed by a �± ⌘ �±h2/f + · · · field redefinition. Col-
lectively, though, the two operators yield a Higgs quartic
after � is integrated out:

V ⇠ 4�1�2

�1 + �2
h4 + · · · . (7)

This is the form of all little Higgs quartics. A small Higgs
mass term is generated radiatively from eq. (6), and the
resulting potential allows for a parametric separation be-
tween the electroweak vev v and the decay constant f .

At this point, we have not specified the quantum num-
bers of the scalar �, which is equivalent to specifying the
quantum numbers of h2. The possible SU(2)L represen-
tations for h2 are determined by

2⌦ 2 = 3S ⌦ 1A, 2⌦ 2 = 3⌦ 1, (8)

where the S/A subscript refers to the representation be-
ing symmetric/antisymmetric under the interchange of
the two doublets. This classification holds regardless of
the number of Higgs fields.

In a one-Higgs doublet model, the 1A representation
vanishes, and � can be a complex triplet, a real triplet,
or a real singlet:

hihj ! �ij (3S), (9)

h†⌧ah! �a (3), (10)

h†h! ⌘ (1), (11)

where ⌧a are the Pauli matrices, and we use the notation
⌘ to refer to a real singlet that carries no other charges.
If � is a real or complex SU(2)L triplet, then eq. (6) gives
rise to a tree-level quartic coupling yet protects the Higgs
mass. A complex � triplet is used in the SU(5)/SO(5)
littlest Higgs [3], and a real � triplet is present in the
SO(9)/(SO(5)⇥SO(4)) construction [9] (though this lat-
ter model has a pathology that will be understood in the
next section).

However, if � is a real singlet ⌘, then explicit com-
putation shows that eq. (6) generates a quadratically-
divergent ⌘ tadpole and Higgs mass at one-loop! (For an
example, see the appendix.)

�1f⇤2

16⇡2

✓
⌘ +

h†h

f
+ · · ·

◆
� �2f⇤2

16⇡2

✓
⌘ � h†h

f
+ · · ·

◆
(12)

Note the sign di↵erence between the two terms, which
means that the Higgs mass term cannot be forbidden by
T -parity [3, 13, 14] with �1 = �2, and a parity that en-
forces �1 = ��2 would imply no Higgs quartic coupling
in the first place. Therefore, there is no viable one-Higgs
doublet little Higgs model where a collective quartic in-
volves a real singlet ⌘. In particular, this explains why
it is impossible to add a collective quartic coupling to
the simplest little Higgs [6] without extending the Higgs
sector [15].

The reason for this pathology is that the shift sym-
metry alone does not forbid a tadpole for ⌘. If ⌘ had
non-trivial quantum numbers (such as being an SU(2)L

triplet), then these extra symmetries would forbid the ⌘
tadpole. Famously, the singlet h†h cannot be charged
under any symmetry (except a shift symmetry), and the
same holds for the singlet ⌘. To illustrate this pathology
further, we construct an explicit singlet ⌘ model which re-
alizes the full non-linear shift symmetries in appendix A.

In a two-Higgs doublet model, one can have quartics
constructed not only with SU(2)L triplets but also with
singlets. Choosing conventions where h1 and h2 have the
same hypercharge, � can a priori be a complex singlet
with or without hypercharge:

hi
1h

j
2✏ij ! � (1A), (13)

h†1h2 ! � (1). (14)

Note however that the quartic constructed from the hy-
percharge carrying singlet |hi

1h
j
2✏ij |2 is unsatisfactory be-

cause it vanishes when the h1 and h2 vevs are aligned to
preserve electric charge. A hypercharge neutral complex
� is used in the SU(6)/Sp(6) antisymmetric condensate
model [8].

In addition, � can even be a real singlet as long as it
has an extra Z2 symmetry:

Re[h†1h2]! � (1). (15)

In this case, the symmetry

�! ��, h1 ! �h1, h2 ! h2 (16)

 
“  ” “  ”

2

II. COLLECTIVE QUARTICS

How does one construct a Higgs quartic that does
not radiatively generate a quadratically-divergent Higgs
mass? In little Higgs theories, one finds a set of opera-
tors that each preserve di↵erent shift symmetries acting
on the Higgs doublet, but collectively break all the sym-
metries that protect the Higgs potential [1, 2, 3, 4, 5].
Since the quadratically-divergent diagrams only involve
one operator at a time, the shift symmetries are su�cient
to protect the Higgs mass parameter.

Concretely, in a non-linear sigma model where the
Higgs is a pseudo-Nambu-Goldstone boson (PNGB), one
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�1f⇤2

16⇡2

✓
⌘ +

h†h

f
+ · · ·

◆
� �2f⇤2
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✓
⌘ � h†h

f
+ · · ·

◆
(12)

Note the sign di↵erence between the two terms, which
means that the Higgs mass term cannot be forbidden by
T -parity [3, 13, 14] with �1 = �2, and a parity that en-
forces �1 = ��2 would imply no Higgs quartic coupling
in the first place. Therefore, there is no viable one-Higgs
doublet little Higgs model where a collective quartic in-
volves a real singlet ⌘. In particular, this explains why
it is impossible to add a collective quartic coupling to
the simplest little Higgs [6] without extending the Higgs
sector [15].

The reason for this pathology is that the shift sym-
metry alone does not forbid a tadpole for ⌘. If ⌘ had
non-trivial quantum numbers (such as being an SU(2)L

triplet), then these extra symmetries would forbid the ⌘
tadpole. Famously, the singlet h†h cannot be charged
under any symmetry (except a shift symmetry), and the
same holds for the singlet ⌘. To illustrate this pathology
further, we construct an explicit singlet ⌘ model which re-
alizes the full non-linear shift symmetries in appendix A.

In a two-Higgs doublet model, one can have quartics
constructed not only with SU(2)L triplets but also with
singlets. Choosing conventions where h1 and h2 have the
same hypercharge, � can a priori be a complex singlet
with or without hypercharge:

hi
1h

j
2✏ij ! � (1A), (13)

h†1h2 ! � (1). (14)

Note however that the quartic constructed from the hy-
percharge carrying singlet |hi

1h
j
2✏ij |2 is unsatisfactory be-

cause it vanishes when the h1 and h2 vevs are aligned to
preserve electric charge. A hypercharge neutral complex
� is used in the SU(6)/Sp(6) antisymmetric condensate
model [8].

In addition, � can even be a real singlet as long as it
has an extra Z2 symmetry:

Re[h†1h2]! � (1). (15)

In this case, the symmetry

�! ��, h1 ! �h1, h2 ! h2 (16)

Integrating out   generates the quartic.�

Each term preserves enough symmetry to forbid 
corrections to Higgs mass

Who is   ?    �
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Any extension of the standard model that aims to describe TeV-scale physics without fine-tuning
must have a radiatively-stable Higgs potential. In little Higgs theories, radiative stability is achieved
through so-called collective symmetry breaking. In this letter, we focus on the necessary conditions
for a little Higgs to have a collective Higgs quartic coupling. In one-Higgs doublet models, a collective
quartic requires an electroweak triplet scalar. In two-Higgs doublet models, a collective quartic
requires a triplet or singlet scalar. As a corollary of this study, we show that some little Higgs
theories have dangerous singlets, a pathology where collective symmetry breaking does not suppress
quadratically-divergent corrections to the Higgs mass.

I. INTRODUCTION

The standard model Higgs mass gets quadratically-
divergent radiative corrections from electroweak gauge
interactions, the top quark Yukawa coupling, and the
Higgs quartic interaction. These radiative corrections be-
come large and require fine-tuning of the Higgs potential
when one pushes the range of validity of the theory above
the TeV scale. Thus, any model that is designed to de-
scribe physics at LHC energies without fine-tuning must
incorporate additional structures in the gauge, top, and
Higgs sectors to remove these quadratic divergences.

Little Higgs theories [1, 2, 3, 4, 5] avoid quadratic di-
vergences through collective symmetry breaking. In the
quartic sector, for example, the Higgs quartic coupling
is introduced through two operators, both of which indi-
vidually preserve enough symmetries to forbid radiative
corrections to the Higgs mass, but collectively generate
the desired Higgs potential. While this recipe sounds
straightforward, there are known examples in the liter-
ature [6, 7] where collectively generating gauge/fermion
couplings is possible, but implementing a collective quar-
tic appears to be impossible.

This di�culty of constructing little Higgs quartics mo-
tivates us to examine the structure of quartic couplings
with collective symmetry breaking in a systematic way.
Our main result is that a successful collective quartic re-
quires additional scalars with specific electroweak quan-
tum numbers. In particular, the quartic of a one-Higgs
doublet model requires (complex or real) SU(2)L triplets,
while the quartic of a two-Higgs doublet model can be
constructed with either triplets or singlets, as long as the
singlet carries some non-trivial global charge.

Moreover, we find that real singlet scalars pose a po-
tential danger to Higgs mass stability in little Higgs mod-
els. The problem arises when the shift symmetry which
would näıvely protect the Higgs boson mass

h! h + ✏ + · · · (1)

is accompanied by shifts acting on a real singlet ⌘

⌘ ! ⌘ ⌥ ✏†h + h†✏

f
+ · · · , (2)

where f is the decay constant of some non-linear sigma
model. In this case, the operators

L = M3

✓
⌘ ± h†h

f
+ · · ·

◆
(3)

are invariant under the combined shift symmetries and
contain Higgs mass terms. This is the problem of dan-
gerous singlets in little Higgs theories. To ensure that
operators like eq. (3) are not radiatively generated, one
must preserve additional symmetries acting on ⌘.

These results clarify the known quartic mechanisms
in the little Higgs literature. The SU(5)/SO(5) littlest
Higgs [3] is an example of a one-Higgs doublet model
with an additional complex triplet. The SU(6)/Sp(6)
antisymmetric condensate model [8] is an example of a
two-Higgs doublet model with an additional complex sin-
glet. Our arguments explain why any attempt in one-
Higgs doublet models to build quartics with only addi-
tional singlets is destined to fail. As cautionary exam-
ples of dangerous singlets, the SO(9)/(SO(5) ⇥ SO(4))
[9] and SU(9)/SU(8) [10] models both have unacceptable
quadratically-divergent contributions to the Higgs mass.

The di�culties with constructing quartics are not
limited to little Higgs theories, and similar issues ap-
pear in certain extra-dimensional models with bulk
gauge/fermion fields and brane-localized symmetry
breaking [11, 12]. While extra-dimensional locality guar-
antees collective symmetry breaking in the gauge and
fermion sectors, locality does not imply collective symme-
try breaking in the quartic sector. In models like [11, 12],
a quartic coupling can be generated through fine-tuning,
but to construct a naturally large quartic coupling, one
needs to introduce collective structures (as also suggested
in [11]). The results of this letter pertain to these natural
quartic mechanisms.

In the next section, we classify all possible little Higgs
quartics in one- and two-Higgs doublet models accord-
ing to SU(2)L transformation properties and show why
quartics cannot arise from singlet scalars. In section III,
we discuss the problem of dangerous singlets. We con-
clude with some lessons for little Higgs model building.
An example model is presented in the appendix.
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I. INTRODUCTION

The standard model Higgs mass gets quadratically-
divergent radiative corrections from electroweak gauge
interactions, the top quark Yukawa coupling, and the
Higgs quartic interaction. These radiative corrections be-
come large and require fine-tuning of the Higgs potential
when one pushes the range of validity of the theory above
the TeV scale. Thus, any model that is designed to de-
scribe physics at LHC energies without fine-tuning must
incorporate additional structures in the gauge, top, and
Higgs sectors to remove these quadratic divergences.

Little Higgs theories [1, 2, 3, 4, 5] avoid quadratic di-
vergences through collective symmetry breaking. In the
quartic sector, for example, the Higgs quartic coupling
is introduced through two operators, both of which indi-
vidually preserve enough symmetries to forbid radiative
corrections to the Higgs mass, but collectively generate
the desired Higgs potential. While this recipe sounds
straightforward, there are known examples in the liter-
ature [6, 7] where collectively generating gauge/fermion
couplings is possible, but implementing a collective quar-
tic appears to be impossible.

This di�culty of constructing little Higgs quartics mo-
tivates us to examine the structure of quartic couplings
with collective symmetry breaking in a systematic way.
Our main result is that a successful collective quartic re-
quires additional scalars with specific electroweak quan-
tum numbers. In particular, the quartic of a one-Higgs
doublet model requires (complex or real) SU(2)L triplets,
while the quartic of a two-Higgs doublet model can be
constructed with either triplets or singlets, as long as the
singlet carries some non-trivial global charge.

Moreover, we find that real singlet scalars pose a po-
tential danger to Higgs mass stability in little Higgs mod-
els. The problem arises when the shift symmetry which
would näıvely protect the Higgs boson mass

h! h + ✏ + · · · (1)

is accompanied by shifts acting on a real singlet ⌘

⌘ ! ⌘ ⌥ ✏†h + h†✏

f
+ · · · , (2)

where f is the decay constant of some non-linear sigma
model. In this case, the operators

L = M3

✓
⌘ ± h†h

f
+ · · ·

◆
(3)

are invariant under the combined shift symmetries and
contain Higgs mass terms. This is the problem of dan-
gerous singlets in little Higgs theories. To ensure that
operators like eq. (3) are not radiatively generated, one
must preserve additional symmetries acting on ⌘.

These results clarify the known quartic mechanisms
in the little Higgs literature. The SU(5)/SO(5) littlest
Higgs [3] is an example of a one-Higgs doublet model
with an additional complex triplet. The SU(6)/Sp(6)
antisymmetric condensate model [8] is an example of a
two-Higgs doublet model with an additional complex sin-
glet. Our arguments explain why any attempt in one-
Higgs doublet models to build quartics with only addi-
tional singlets is destined to fail. As cautionary exam-
ples of dangerous singlets, the SO(9)/(SO(5) ⇥ SO(4))
[9] and SU(9)/SU(8) [10] models both have unacceptable
quadratically-divergent contributions to the Higgs mass.

The di�culties with constructing quartics are not
limited to little Higgs theories, and similar issues ap-
pear in certain extra-dimensional models with bulk
gauge/fermion fields and brane-localized symmetry
breaking [11, 12]. While extra-dimensional locality guar-
antees collective symmetry breaking in the gauge and
fermion sectors, locality does not imply collective symme-
try breaking in the quartic sector. In models like [11, 12],
a quartic coupling can be generated through fine-tuning,
but to construct a naturally large quartic coupling, one
needs to introduce collective structures (as also suggested
in [11]). The results of this letter pertain to these natural
quartic mechanisms.

In the next section, we classify all possible little Higgs
quartics in one- and two-Higgs doublet models accord-
ing to SU(2)L transformation properties and show why
quartics cannot arise from singlet scalars. In section III,
we discuss the problem of dangerous singlets. We con-
clude with some lessons for little Higgs model building.
An example model is presented in the appendix.
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divergent radiative corrections from electroweak gauge
interactions, the top quark Yukawa coupling, and the
Higgs quartic interaction. These radiative corrections be-
come large and require fine-tuning of the Higgs potential
when one pushes the range of validity of the theory above
the TeV scale. Thus, any model that is designed to de-
scribe physics at LHC energies without fine-tuning must
incorporate additional structures in the gauge, top, and
Higgs sectors to remove these quadratic divergences.

Little Higgs theories [1, 2, 3, 4, 5] avoid quadratic di-
vergences through collective symmetry breaking. In the
quartic sector, for example, the Higgs quartic coupling
is introduced through two operators, both of which indi-
vidually preserve enough symmetries to forbid radiative
corrections to the Higgs mass, but collectively generate
the desired Higgs potential. While this recipe sounds
straightforward, there are known examples in the liter-
ature [6, 7] where collectively generating gauge/fermion
couplings is possible, but implementing a collective quar-
tic appears to be impossible.

This di�culty of constructing little Higgs quartics mo-
tivates us to examine the structure of quartic couplings
with collective symmetry breaking in a systematic way.
Our main result is that a successful collective quartic re-
quires additional scalars with specific electroweak quan-
tum numbers. In particular, the quartic of a one-Higgs
doublet model requires (complex or real) SU(2)L triplets,
while the quartic of a two-Higgs doublet model can be
constructed with either triplets or singlets, as long as the
singlet carries some non-trivial global charge.

Moreover, we find that real singlet scalars pose a po-
tential danger to Higgs mass stability in little Higgs mod-
els. The problem arises when the shift symmetry which
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where f is the decay constant of some non-linear sigma
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are invariant under the combined shift symmetries and
contain Higgs mass terms. This is the problem of dan-
gerous singlets in little Higgs theories. To ensure that
operators like eq. (3) are not radiatively generated, one
must preserve additional symmetries acting on ⌘.

These results clarify the known quartic mechanisms
in the little Higgs literature. The SU(5)/SO(5) littlest
Higgs [3] is an example of a one-Higgs doublet model
with an additional complex triplet. The SU(6)/Sp(6)
antisymmetric condensate model [8] is an example of a
two-Higgs doublet model with an additional complex sin-
glet. Our arguments explain why any attempt in one-
Higgs doublet models to build quartics with only addi-
tional singlets is destined to fail. As cautionary exam-
ples of dangerous singlets, the SO(9)/(SO(5) ⇥ SO(4))
[9] and SU(9)/SU(8) [10] models both have unacceptable
quadratically-divergent contributions to the Higgs mass.

The di�culties with constructing quartics are not
limited to little Higgs theories, and similar issues ap-
pear in certain extra-dimensional models with bulk
gauge/fermion fields and brane-localized symmetry
breaking [11, 12]. While extra-dimensional locality guar-
antees collective symmetry breaking in the gauge and
fermion sectors, locality does not imply collective symme-
try breaking in the quartic sector. In models like [11, 12],
a quartic coupling can be generated through fine-tuning,
but to construct a naturally large quartic coupling, one
needs to introduce collective structures (as also suggested
in [11]). The results of this letter pertain to these natural
quartic mechanisms.

In the next section, we classify all possible little Higgs
quartics in one- and two-Higgs doublet models accord-
ing to SU(2)L transformation properties and show why
quartics cannot arise from singlet scalars. In section III,
we discuss the problem of dangerous singlets. We con-
clude with some lessons for little Higgs model building.
An example model is presented in the appendix.
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when one pushes the range of validity of the theory above
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vergences through collective symmetry breaking. In the
quartic sector, for example, the Higgs quartic coupling
is introduced through two operators, both of which indi-
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the desired Higgs potential. While this recipe sounds
straightforward, there are known examples in the liter-
ature [6, 7] where collectively generating gauge/fermion
couplings is possible, but implementing a collective quar-
tic appears to be impossible.

This di�culty of constructing little Higgs quartics mo-
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Our main result is that a successful collective quartic re-
quires additional scalars with specific electroweak quan-
tum numbers. In particular, the quartic of a one-Higgs
doublet model requires (complex or real) SU(2)L triplets,
while the quartic of a two-Higgs doublet model can be
constructed with either triplets or singlets, as long as the
singlet carries some non-trivial global charge.
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would näıvely protect the Higgs boson mass
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gerous singlets in little Higgs theories. To ensure that
operators like eq. (3) are not radiatively generated, one
must preserve additional symmetries acting on ⌘.

These results clarify the known quartic mechanisms
in the little Higgs literature. The SU(5)/SO(5) littlest
Higgs [3] is an example of a one-Higgs doublet model
with an additional complex triplet. The SU(6)/Sp(6)
antisymmetric condensate model [8] is an example of a
two-Higgs doublet model with an additional complex sin-
glet. Our arguments explain why any attempt in one-
Higgs doublet models to build quartics with only addi-
tional singlets is destined to fail. As cautionary exam-
ples of dangerous singlets, the SO(9)/(SO(5) ⇥ SO(4))
[9] and SU(9)/SU(8) [10] models both have unacceptable
quadratically-divergent contributions to the Higgs mass.

The di�culties with constructing quartics are not
limited to little Higgs theories, and similar issues ap-
pear in certain extra-dimensional models with bulk
gauge/fermion fields and brane-localized symmetry
breaking [11, 12]. While extra-dimensional locality guar-
antees collective symmetry breaking in the gauge and
fermion sectors, locality does not imply collective symme-
try breaking in the quartic sector. In models like [11, 12],
a quartic coupling can be generated through fine-tuning,
but to construct a naturally large quartic coupling, one
needs to introduce collective structures (as also suggested
in [11]). The results of this letter pertain to these natural
quartic mechanisms.

In the next section, we classify all possible little Higgs
quartics in one- and two-Higgs doublet models accord-
ing to SU(2)L transformation properties and show why
quartics cannot arise from singlet scalars. In section III,
we discuss the problem of dangerous singlets. We con-
clude with some lessons for little Higgs model building.
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tic appears to be impossible.

This di�culty of constructing little Higgs quartics mo-
tivates us to examine the structure of quartic couplings
with collective symmetry breaking in a systematic way.
Our main result is that a successful collective quartic re-
quires additional scalars with specific electroweak quan-
tum numbers. In particular, the quartic of a one-Higgs
doublet model requires (complex or real) SU(2)L triplets,
while the quartic of a two-Higgs doublet model can be
constructed with either triplets or singlets, as long as the
singlet carries some non-trivial global charge.

Moreover, we find that real singlet scalars pose a po-
tential danger to Higgs mass stability in little Higgs mod-
els. The problem arises when the shift symmetry which
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in the little Higgs literature. The SU(5)/SO(5) littlest
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Higgs doublet models to build quartics with only addi-
tional singlets is destined to fail. As cautionary exam-
ples of dangerous singlets, the SO(9)/(SO(5) ⇥ SO(4))
[9] and SU(9)/SU(8) [10] models both have unacceptable
quadratically-divergent contributions to the Higgs mass.

The di�culties with constructing quartics are not
limited to little Higgs theories, and similar issues ap-
pear in certain extra-dimensional models with bulk
gauge/fermion fields and brane-localized symmetry
breaking [11, 12]. While extra-dimensional locality guar-
antees collective symmetry breaking in the gauge and
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quartics in one- and two-Higgs doublet models accord-
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ature [11, 16]. Such quartic-motivated models may have
di↵erent symmetries and spectra compared to existing
little Higgs theories and could be less fine-tuned.
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APPENDIX A: AN INVIABLE LITTLE HIGGS
WITH A REAL SINGLET AND ONE HIGGS

DOUBLET

In this appendix, we construct a little Higgs model with
a collective quartic coupling using a real singlet ⌘. We
will not put in fermion/gauge partners, because that can
easily be done in an extra-dimensional picture. We will
see that the resulting quartic coupling radiatively gener-
ates a quadratically-divergent Higgs mass, and therefore
this model is inviable. The main result beyond the argu-
ments from section II is that this model includes the full
non-linear PNGB structure.

To obtain the correct number of PNGBs, consider the
symmetry breaking pattern SO(6)/SO(5), which follows
from a 6 of SO(6) getting a vev. The PNGBs may be
parametrized in terms of a linear sigma field � by writing
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where � is the 6 of SO(6), h is a real 4 of SO(4) which
contains the electroweak SU(2)L under which h is a com-
plex doublet, and ⌘ is a real singlet.

Next, we need two operators that preserve di↵erent
shift symmetries acting on the Higgs

L = �1(�†P1�)2 + �2(�†P2�)2, (A2)

where
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Taken alone, these two operators preserve two di↵erent
SO(5) symmetries, which can be seen explicitly by di-
agonalizing the Pi. Both SO(5) symmetries are sponta-
neously broken by the � vev, thus each operator alone
leaves the Higgs as an exact NGB. Together, the two op-
erators only preserve an SO(4) symmetry, which allows
a quartic coupling of the same form as eq. (6). This is
the essence of collective breaking.

However,

L = m2
1Tr [P1] �†P1� + m2

2Tr [P2] �†P2� (A4)

is not forbidden by any symmetry, and is in fact radia-
tively generated with a quadratic divergence:

m2
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16⇡2
, m2

2 ' �2
⇤2

16⇡2
. (A5)

When expanded out, eq. (A4) contains a tadpole for ⌘
and a Higgs mass term, just as eq. (12). Note that T -
parity (�1 = �2) does not help, and reverse T -parity
(�1 = ��2) implies a vanishing quartic. Also, the Tr [Pi]
terms make clear that a spurion symmetry Pi ! �Pi

does not forbid eq. (A4).

To see the non-cancellation of the quadratic diver-
gence in the Higgs mass diagrammatically, consider the
⌘-loop and a Higgs loop as shown in figure 1. In a the-
ory with a proper collective quartic, their contributions
would be required to cancel by a symmetry. Here there is
no such symmetry, and explicit computation shows that
the quadratic divergence in the first diagram is propor-
tional to �(�1 + �2) whereas the second is proportional
to +3(�1 + �2) so that they do not cancel.

h hT

⌘

h hT

h

FIG. 1: The two quadratically divergent diagrams that con-
tribute to the Higgs boson mass.
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Implications

• One solution: a two Higgs doublet model!

2

II. COLLECTIVE QUARTICS

How does one construct a Higgs quartic that does
not radiatively generate a quadratically-divergent Higgs
mass? In little Higgs theories, one finds a set of opera-
tors that each preserve di↵erent shift symmetries acting
on the Higgs doublet, but collectively break all the sym-
metries that protect the Higgs potential [1, 2, 3, 4, 5].
Since the quadratically-divergent diagrams only involve
one operator at a time, the shift symmetries are su�cient
to protect the Higgs mass parameter.

Concretely, in a non-linear sigma model where the
Higgs is a pseudo-Nambu-Goldstone boson (PNGB), one
näıvely expects the shift symmetry

h! h + ✏ + · · · (4)

to forbid any potential for the Higgs. But if there are
additional PNGBs � with compensating shifts

�! �⌥ h✏ + ✏h

f
+ · · · , (5)

then the two operators

V ⇠ �1f
2

����� +
h2

f
+ · · ·

����
2

+ �2f
2

������
h2

f
+ · · ·

����
2

(6)

each preserve one of the Higgs shift symmetries from
eq. (5). Taken alone, neither �i term would give a phys-
ical Higgs quartic since each individual quartic could be
removed by a �± ⌘ �±h2/f + · · · field redefinition. Col-
lectively, though, the two operators yield a Higgs quartic
after � is integrated out:

V ⇠ 4�1�2

�1 + �2
h4 + · · · . (7)

This is the form of all little Higgs quartics. A small Higgs
mass term is generated radiatively from eq. (6), and the
resulting potential allows for a parametric separation be-
tween the electroweak vev v and the decay constant f .

At this point, we have not specified the quantum num-
bers of the scalar �, which is equivalent to specifying the
quantum numbers of h2. The possible SU(2)L represen-
tations for h2 are determined by

2⌦ 2 = 3S ⌦ 1A, 2⌦ 2 = 3⌦ 1, (8)

where the S/A subscript refers to the representation be-
ing symmetric/antisymmetric under the interchange of
the two doublets. This classification holds regardless of
the number of Higgs fields.

In a one-Higgs doublet model, the 1A representation
vanishes, and � can be a complex triplet, a real triplet,
or a real singlet:

hihj ! �ij (3S), (9)

h†⌧ah! �a (3), (10)

h†h! ⌘ (1), (11)

where ⌧a are the Pauli matrices, and we use the notation
⌘ to refer to a real singlet that carries no other charges.
If � is a real or complex SU(2)L triplet, then eq. (6) gives
rise to a tree-level quartic coupling yet protects the Higgs
mass. A complex � triplet is used in the SU(5)/SO(5)
littlest Higgs [3], and a real � triplet is present in the
SO(9)/(SO(5)⇥SO(4)) construction [9] (though this lat-
ter model has a pathology that will be understood in the
next section).

However, if � is a real singlet ⌘, then explicit com-
putation shows that eq. (6) generates a quadratically-
divergent ⌘ tadpole and Higgs mass at one-loop! (For an
example, see the appendix.)
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(12)

Note the sign di↵erence between the two terms, which
means that the Higgs mass term cannot be forbidden by
T -parity [3, 13, 14] with �1 = �2, and a parity that en-
forces �1 = ��2 would imply no Higgs quartic coupling
in the first place. Therefore, there is no viable one-Higgs
doublet little Higgs model where a collective quartic in-
volves a real singlet ⌘. In particular, this explains why
it is impossible to add a collective quartic coupling to
the simplest little Higgs [6] without extending the Higgs
sector [15].

The reason for this pathology is that the shift sym-
metry alone does not forbid a tadpole for ⌘. If ⌘ had
non-trivial quantum numbers (such as being an SU(2)L

triplet), then these extra symmetries would forbid the ⌘
tadpole. Famously, the singlet h†h cannot be charged
under any symmetry (except a shift symmetry), and the
same holds for the singlet ⌘. To illustrate this pathology
further, we construct an explicit singlet ⌘ model which re-
alizes the full non-linear shift symmetries in appendix A.

In a two-Higgs doublet model, one can have quartics
constructed not only with SU(2)L triplets but also with
singlets. Choosing conventions where h1 and h2 have the
same hypercharge, � can a priori be a complex singlet
with or without hypercharge:

hi
1h

j
2✏ij ! � (1A), (13)

h†1h2 ! � (1). (14)

Note however that the quartic constructed from the hy-
percharge carrying singlet |hi

1h
j
2✏ij |2 is unsatisfactory be-

cause it vanishes when the h1 and h2 vevs are aligned to
preserve electric charge. A hypercharge neutral complex
� is used in the SU(6)/Sp(6) antisymmetric condensate
model [8].

In addition, � can even be a real singlet as long as it
has an extra Z2 symmetry:

Re[h†1h2]! � (1). (15)

In this case, the symmetry

�! ��, h1 ! �h1, h2 ! h2 (16)
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Note the sign di↵erence between the two terms, which
means that the Higgs mass term cannot be forbidden by
T -parity [3, 13, 14] with �1 = �2, and a parity that en-
forces �1 = ��2 would imply no Higgs quartic coupling
in the first place. Therefore, there is no viable one-Higgs
doublet little Higgs model where a collective quartic in-
volves a real singlet ⌘. In particular, this explains why
it is impossible to add a collective quartic coupling to
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mass. A complex � triplet is used in the SU(5)/SO(5)
littlest Higgs [3], and a real � triplet is present in the
SO(9)/(SO(5)⇥SO(4)) construction [9] (though this lat-
ter model has a pathology that will be understood in the
next section).

However, if � is a real singlet ⌘, then explicit com-
putation shows that eq. (6) generates a quadratically-
divergent ⌘ tadpole and Higgs mass at one-loop! (For an
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Note the sign di↵erence between the two terms, which
means that the Higgs mass term cannot be forbidden by
T -parity [3, 13, 14] with �1 = �2, and a parity that en-
forces �1 = ��2 would imply no Higgs quartic coupling
in the first place. Therefore, there is no viable one-Higgs
doublet little Higgs model where a collective quartic in-
volves a real singlet ⌘. In particular, this explains why
it is impossible to add a collective quartic coupling to
the simplest little Higgs [6] without extending the Higgs
sector [15].

The reason for this pathology is that the shift sym-
metry alone does not forbid a tadpole for ⌘. If ⌘ had
non-trivial quantum numbers (such as being an SU(2)L

triplet), then these extra symmetries would forbid the ⌘
tadpole. Famously, the singlet h†h cannot be charged
under any symmetry (except a shift symmetry), and the
same holds for the singlet ⌘. To illustrate this pathology
further, we construct an explicit singlet ⌘ model which re-
alizes the full non-linear shift symmetries in appendix A.

In a two-Higgs doublet model, one can have quartics
constructed not only with SU(2)L triplets but also with
singlets. Choosing conventions where h1 and h2 have the
same hypercharge, � can a priori be a complex singlet
with or without hypercharge:
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2✏ij ! � (1A), (13)

h†1h2 ! � (1). (14)

Note however that the quartic constructed from the hy-
percharge carrying singlet |hi

1h
j
2✏ij |2 is unsatisfactory be-

cause it vanishes when the h1 and h2 vevs are aligned to
preserve electric charge. A hypercharge neutral complex
� is used in the SU(6)/Sp(6) antisymmetric condensate
model [8].

In addition, � can even be a real singlet as long as it
has an extra Z2 symmetry:

Re[h†1h2]! � (1). (15)

In this case, the symmetry

�! ��, h1 ! �h1, h2 ! h2 (16)
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näıvely expects the shift symmetry

h! h + ✏ + · · · (4)

to forbid any potential for the Higgs. But if there are
additional PNGBs � with compensating shifts

�! �⌥ h✏ + ✏h

f
+ · · · , (5)

then the two operators

V ⇠ �1f
2

����� +
h2

f
+ · · ·

����
2

+ �2f
2

������
h2

f
+ · · ·

����
2

(6)

each preserve one of the Higgs shift symmetries from
eq. (5). Taken alone, neither �i term would give a phys-
ical Higgs quartic since each individual quartic could be
removed by a �± ⌘ �±h2/f + · · · field redefinition. Col-
lectively, though, the two operators yield a Higgs quartic
after � is integrated out:

V ⇠ 4�1�2

�1 + �2
h4 + · · · . (7)

This is the form of all little Higgs quartics. A small Higgs
mass term is generated radiatively from eq. (6), and the
resulting potential allows for a parametric separation be-
tween the electroweak vev v and the decay constant f .

At this point, we have not specified the quantum num-
bers of the scalar �, which is equivalent to specifying the
quantum numbers of h2. The possible SU(2)L represen-
tations for h2 are determined by

2⌦ 2 = 3S ⌦ 1A, 2⌦ 2 = 3⌦ 1, (8)

where the S/A subscript refers to the representation be-
ing symmetric/antisymmetric under the interchange of
the two doublets. This classification holds regardless of
the number of Higgs fields.

In a one-Higgs doublet model, the 1A representation
vanishes, and � can be a complex triplet, a real triplet,
or a real singlet:

hihj ! �ij (3S), (9)

h†⌧ah! �a (3), (10)

h†h! ⌘ (1), (11)

where ⌧a are the Pauli matrices, and we use the notation
⌘ to refer to a real singlet that carries no other charges.
If � is a real or complex SU(2)L triplet, then eq. (6) gives
rise to a tree-level quartic coupling yet protects the Higgs
mass. A complex � triplet is used in the SU(5)/SO(5)
littlest Higgs [3], and a real � triplet is present in the
SO(9)/(SO(5)⇥SO(4)) construction [9] (though this lat-
ter model has a pathology that will be understood in the
next section).

However, if � is a real singlet ⌘, then explicit com-
putation shows that eq. (6) generates a quadratically-
divergent ⌘ tadpole and Higgs mass at one-loop! (For an
example, see the appendix.)
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Note the sign di↵erence between the two terms, which
means that the Higgs mass term cannot be forbidden by
T -parity [3, 13, 14] with �1 = �2, and a parity that en-
forces �1 = ��2 would imply no Higgs quartic coupling
in the first place. Therefore, there is no viable one-Higgs
doublet little Higgs model where a collective quartic in-
volves a real singlet ⌘. In particular, this explains why
it is impossible to add a collective quartic coupling to
the simplest little Higgs [6] without extending the Higgs
sector [15].

The reason for this pathology is that the shift sym-
metry alone does not forbid a tadpole for ⌘. If ⌘ had
non-trivial quantum numbers (such as being an SU(2)L

triplet), then these extra symmetries would forbid the ⌘
tadpole. Famously, the singlet h†h cannot be charged
under any symmetry (except a shift symmetry), and the
same holds for the singlet ⌘. To illustrate this pathology
further, we construct an explicit singlet ⌘ model which re-
alizes the full non-linear shift symmetries in appendix A.

In a two-Higgs doublet model, one can have quartics
constructed not only with SU(2)L triplets but also with
singlets. Choosing conventions where h1 and h2 have the
same hypercharge, � can a priori be a complex singlet
with or without hypercharge:

hi
1h

j
2✏ij ! � (1A), (13)

h†1h2 ! � (1). (14)

Note however that the quartic constructed from the hy-
percharge carrying singlet |hi

1h
j
2✏ij |2 is unsatisfactory be-

cause it vanishes when the h1 and h2 vevs are aligned to
preserve electric charge. A hypercharge neutral complex
� is used in the SU(6)/Sp(6) antisymmetric condensate
model [8].

In addition, � can even be a real singlet as long as it
has an extra Z2 symmetry:

Re[h†1h2]! � (1). (15)

In this case, the symmetry

�! ��, h1 ! �h1, h2 ! h2 (16)
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II. COLLECTIVE QUARTICS

How does one construct a Higgs quartic that does
not radiatively generate a quadratically-divergent Higgs
mass? In little Higgs theories, one finds a set of opera-
tors that each preserve di↵erent shift symmetries acting
on the Higgs doublet, but collectively break all the sym-
metries that protect the Higgs potential [1, 2, 3, 4, 5].
Since the quadratically-divergent diagrams only involve
one operator at a time, the shift symmetries are su�cient
to protect the Higgs mass parameter.

Concretely, in a non-linear sigma model where the
Higgs is a pseudo-Nambu-Goldstone boson (PNGB), one
näıvely expects the shift symmetry

h! h + ✏ + · · · (4)

to forbid any potential for the Higgs. But if there are
additional PNGBs � with compensating shifts
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each preserve one of the Higgs shift symmetries from
eq. (5). Taken alone, neither �i term would give a phys-
ical Higgs quartic since each individual quartic could be
removed by a �± ⌘ �±h2/f + · · · field redefinition. Col-
lectively, though, the two operators yield a Higgs quartic
after � is integrated out:

V ⇠ 4�1�2

�1 + �2
h4 + · · · . (7)

This is the form of all little Higgs quartics. A small Higgs
mass term is generated radiatively from eq. (6), and the
resulting potential allows for a parametric separation be-
tween the electroweak vev v and the decay constant f .

At this point, we have not specified the quantum num-
bers of the scalar �, which is equivalent to specifying the
quantum numbers of h2. The possible SU(2)L represen-
tations for h2 are determined by

2⌦ 2 = 3S ⌦ 1A, 2⌦ 2 = 3⌦ 1, (8)

where the S/A subscript refers to the representation be-
ing symmetric/antisymmetric under the interchange of
the two doublets. This classification holds regardless of
the number of Higgs fields.

In a one-Higgs doublet model, the 1A representation
vanishes, and � can be a complex triplet, a real triplet,
or a real singlet:

hihj ! �ij (3S), (9)

h†⌧ah! �a (3), (10)

h†h! ⌘ (1), (11)

where ⌧a are the Pauli matrices, and we use the notation
⌘ to refer to a real singlet that carries no other charges.
If � is a real or complex SU(2)L triplet, then eq. (6) gives
rise to a tree-level quartic coupling yet protects the Higgs
mass. A complex � triplet is used in the SU(5)/SO(5)
littlest Higgs [3], and a real � triplet is present in the
SO(9)/(SO(5)⇥SO(4)) construction [9] (though this lat-
ter model has a pathology that will be understood in the
next section).

However, if � is a real singlet ⌘, then explicit com-
putation shows that eq. (6) generates a quadratically-
divergent ⌘ tadpole and Higgs mass at one-loop! (For an
example, see the appendix.)
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Note the sign di↵erence between the two terms, which
means that the Higgs mass term cannot be forbidden by
T -parity [3, 13, 14] with �1 = �2, and a parity that en-
forces �1 = ��2 would imply no Higgs quartic coupling
in the first place. Therefore, there is no viable one-Higgs
doublet little Higgs model where a collective quartic in-
volves a real singlet ⌘. In particular, this explains why
it is impossible to add a collective quartic coupling to
the simplest little Higgs [6] without extending the Higgs
sector [15].

The reason for this pathology is that the shift sym-
metry alone does not forbid a tadpole for ⌘. If ⌘ had
non-trivial quantum numbers (such as being an SU(2)L

triplet), then these extra symmetries would forbid the ⌘
tadpole. Famously, the singlet h†h cannot be charged
under any symmetry (except a shift symmetry), and the
same holds for the singlet ⌘. To illustrate this pathology
further, we construct an explicit singlet ⌘ model which re-
alizes the full non-linear shift symmetries in appendix A.

In a two-Higgs doublet model, one can have quartics
constructed not only with SU(2)L triplets but also with
singlets. Choosing conventions where h1 and h2 have the
same hypercharge, � can a priori be a complex singlet
with or without hypercharge:

hi
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j
2✏ij ! � (1A), (13)

h†1h2 ! � (1). (14)

Note however that the quartic constructed from the hy-
percharge carrying singlet |hi

1h
j
2✏ij |2 is unsatisfactory be-

cause it vanishes when the h1 and h2 vevs are aligned to
preserve electric charge. A hypercharge neutral complex
� is used in the SU(6)/Sp(6) antisymmetric condensate
model [8].

In addition, � can even be a real singlet as long as it
has an extra Z2 symmetry:

Re[h†1h2]! � (1). (15)

In this case, the symmetry

�! ��, h1 ! �h1, h2 ! h2 (16)
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II. COLLECTIVE QUARTICS

How does one construct a Higgs quartic that does
not radiatively generate a quadratically-divergent Higgs
mass? In little Higgs theories, one finds a set of opera-
tors that each preserve di↵erent shift symmetries acting
on the Higgs doublet, but collectively break all the sym-
metries that protect the Higgs potential [1, 2, 3, 4, 5].
Since the quadratically-divergent diagrams only involve
one operator at a time, the shift symmetries are su�cient
to protect the Higgs mass parameter.

Concretely, in a non-linear sigma model where the
Higgs is a pseudo-Nambu-Goldstone boson (PNGB), one
näıvely expects the shift symmetry

h! h + ✏ + · · · (4)

to forbid any potential for the Higgs. But if there are
additional PNGBs � with compensating shifts
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each preserve one of the Higgs shift symmetries from
eq. (5). Taken alone, neither �i term would give a phys-
ical Higgs quartic since each individual quartic could be
removed by a �± ⌘ �±h2/f + · · · field redefinition. Col-
lectively, though, the two operators yield a Higgs quartic
after � is integrated out:

V ⇠ 4�1�2

�1 + �2
h4 + · · · . (7)

This is the form of all little Higgs quartics. A small Higgs
mass term is generated radiatively from eq. (6), and the
resulting potential allows for a parametric separation be-
tween the electroweak vev v and the decay constant f .

At this point, we have not specified the quantum num-
bers of the scalar �, which is equivalent to specifying the
quantum numbers of h2. The possible SU(2)L represen-
tations for h2 are determined by

2⌦ 2 = 3S ⌦ 1A, 2⌦ 2 = 3⌦ 1, (8)

where the S/A subscript refers to the representation be-
ing symmetric/antisymmetric under the interchange of
the two doublets. This classification holds regardless of
the number of Higgs fields.

In a one-Higgs doublet model, the 1A representation
vanishes, and � can be a complex triplet, a real triplet,
or a real singlet:

hihj ! �ij (3S), (9)

h†⌧ah! �a (3), (10)

h†h! ⌘ (1), (11)

where ⌧a are the Pauli matrices, and we use the notation
⌘ to refer to a real singlet that carries no other charges.
If � is a real or complex SU(2)L triplet, then eq. (6) gives
rise to a tree-level quartic coupling yet protects the Higgs
mass. A complex � triplet is used in the SU(5)/SO(5)
littlest Higgs [3], and a real � triplet is present in the
SO(9)/(SO(5)⇥SO(4)) construction [9] (though this lat-
ter model has a pathology that will be understood in the
next section).

However, if � is a real singlet ⌘, then explicit com-
putation shows that eq. (6) generates a quadratically-
divergent ⌘ tadpole and Higgs mass at one-loop! (For an
example, see the appendix.)
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Note the sign di↵erence between the two terms, which
means that the Higgs mass term cannot be forbidden by
T -parity [3, 13, 14] with �1 = �2, and a parity that en-
forces �1 = ��2 would imply no Higgs quartic coupling
in the first place. Therefore, there is no viable one-Higgs
doublet little Higgs model where a collective quartic in-
volves a real singlet ⌘. In particular, this explains why
it is impossible to add a collective quartic coupling to
the simplest little Higgs [6] without extending the Higgs
sector [15].

The reason for this pathology is that the shift sym-
metry alone does not forbid a tadpole for ⌘. If ⌘ had
non-trivial quantum numbers (such as being an SU(2)L

triplet), then these extra symmetries would forbid the ⌘
tadpole. Famously, the singlet h†h cannot be charged
under any symmetry (except a shift symmetry), and the
same holds for the singlet ⌘. To illustrate this pathology
further, we construct an explicit singlet ⌘ model which re-
alizes the full non-linear shift symmetries in appendix A.

In a two-Higgs doublet model, one can have quartics
constructed not only with SU(2)L triplets but also with
singlets. Choosing conventions where h1 and h2 have the
same hypercharge, � can a priori be a complex singlet
with or without hypercharge:

hi
1h

j
2✏ij ! � (1A), (13)

h†1h2 ! � (1). (14)

Note however that the quartic constructed from the hy-
percharge carrying singlet |hi

1h
j
2✏ij |2 is unsatisfactory be-

cause it vanishes when the h1 and h2 vevs are aligned to
preserve electric charge. A hypercharge neutral complex
� is used in the SU(6)/Sp(6) antisymmetric condensate
model [8].

In addition, � can even be a real singlet as long as it
has an extra Z2 symmetry:

Re[h†1h2]! � (1). (15)

In this case, the symmetry

�! ��, h1 ! �h1, h2 ! h2 (16)
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II. COLLECTIVE QUARTICS

How does one construct a Higgs quartic that does
not radiatively generate a quadratically-divergent Higgs
mass? In little Higgs theories, one finds a set of opera-
tors that each preserve di↵erent shift symmetries acting
on the Higgs doublet, but collectively break all the sym-
metries that protect the Higgs potential [1, 2, 3, 4, 5].
Since the quadratically-divergent diagrams only involve
one operator at a time, the shift symmetries are su�cient
to protect the Higgs mass parameter.

Concretely, in a non-linear sigma model where the
Higgs is a pseudo-Nambu-Goldstone boson (PNGB), one
näıvely expects the shift symmetry

h! h + ✏ + · · · (4)

to forbid any potential for the Higgs. But if there are
additional PNGBs � with compensating shifts

�! �⌥ h✏ + ✏h
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each preserve one of the Higgs shift symmetries from
eq. (5). Taken alone, neither �i term would give a phys-
ical Higgs quartic since each individual quartic could be
removed by a �± ⌘ �±h2/f + · · · field redefinition. Col-
lectively, though, the two operators yield a Higgs quartic
after � is integrated out:

V ⇠ 4�1�2

�1 + �2
h4 + · · · . (7)

This is the form of all little Higgs quartics. A small Higgs
mass term is generated radiatively from eq. (6), and the
resulting potential allows for a parametric separation be-
tween the electroweak vev v and the decay constant f .

At this point, we have not specified the quantum num-
bers of the scalar �, which is equivalent to specifying the
quantum numbers of h2. The possible SU(2)L represen-
tations for h2 are determined by

2⌦ 2 = 3S ⌦ 1A, 2⌦ 2 = 3⌦ 1, (8)

where the S/A subscript refers to the representation be-
ing symmetric/antisymmetric under the interchange of
the two doublets. This classification holds regardless of
the number of Higgs fields.

In a one-Higgs doublet model, the 1A representation
vanishes, and � can be a complex triplet, a real triplet,
or a real singlet:

hihj ! �ij (3S), (9)

h†⌧ah! �a (3), (10)

h†h! ⌘ (1), (11)

where ⌧a are the Pauli matrices, and we use the notation
⌘ to refer to a real singlet that carries no other charges.
If � is a real or complex SU(2)L triplet, then eq. (6) gives
rise to a tree-level quartic coupling yet protects the Higgs
mass. A complex � triplet is used in the SU(5)/SO(5)
littlest Higgs [3], and a real � triplet is present in the
SO(9)/(SO(5)⇥SO(4)) construction [9] (though this lat-
ter model has a pathology that will be understood in the
next section).

However, if � is a real singlet ⌘, then explicit com-
putation shows that eq. (6) generates a quadratically-
divergent ⌘ tadpole and Higgs mass at one-loop! (For an
example, see the appendix.)
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Note the sign di↵erence between the two terms, which
means that the Higgs mass term cannot be forbidden by
T -parity [3, 13, 14] with �1 = �2, and a parity that en-
forces �1 = ��2 would imply no Higgs quartic coupling
in the first place. Therefore, there is no viable one-Higgs
doublet little Higgs model where a collective quartic in-
volves a real singlet ⌘. In particular, this explains why
it is impossible to add a collective quartic coupling to
the simplest little Higgs [6] without extending the Higgs
sector [15].

The reason for this pathology is that the shift sym-
metry alone does not forbid a tadpole for ⌘. If ⌘ had
non-trivial quantum numbers (such as being an SU(2)L

triplet), then these extra symmetries would forbid the ⌘
tadpole. Famously, the singlet h†h cannot be charged
under any symmetry (except a shift symmetry), and the
same holds for the singlet ⌘. To illustrate this pathology
further, we construct an explicit singlet ⌘ model which re-
alizes the full non-linear shift symmetries in appendix A.

In a two-Higgs doublet model, one can have quartics
constructed not only with SU(2)L triplets but also with
singlets. Choosing conventions where h1 and h2 have the
same hypercharge, � can a priori be a complex singlet
with or without hypercharge:

hi
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j
2✏ij ! � (1A), (13)

h†1h2 ! � (1). (14)

Note however that the quartic constructed from the hy-
percharge carrying singlet |hi

1h
j
2✏ij |2 is unsatisfactory be-

cause it vanishes when the h1 and h2 vevs are aligned to
preserve electric charge. A hypercharge neutral complex
� is used in the SU(6)/Sp(6) antisymmetric condensate
model [8].

In addition, � can even be a real singlet as long as it
has an extra Z2 symmetry:

Re[h†1h2]! � (1). (15)

In this case, the symmetry

�! ��, h1 ! �h1, h2 ! h2 (16)
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II. COLLECTIVE QUARTICS

How does one construct a Higgs quartic that does
not radiatively generate a quadratically-divergent Higgs
mass? In little Higgs theories, one finds a set of opera-
tors that each preserve di↵erent shift symmetries acting
on the Higgs doublet, but collectively break all the sym-
metries that protect the Higgs potential [1, 2, 3, 4, 5].
Since the quadratically-divergent diagrams only involve
one operator at a time, the shift symmetries are su�cient
to protect the Higgs mass parameter.

Concretely, in a non-linear sigma model where the
Higgs is a pseudo-Nambu-Goldstone boson (PNGB), one
näıvely expects the shift symmetry

h! h + ✏ + · · · (4)

to forbid any potential for the Higgs. But if there are
additional PNGBs � with compensating shifts
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each preserve one of the Higgs shift symmetries from
eq. (5). Taken alone, neither �i term would give a phys-
ical Higgs quartic since each individual quartic could be
removed by a �± ⌘ �±h2/f + · · · field redefinition. Col-
lectively, though, the two operators yield a Higgs quartic
after � is integrated out:

V ⇠ 4�1�2

�1 + �2
h4 + · · · . (7)

This is the form of all little Higgs quartics. A small Higgs
mass term is generated radiatively from eq. (6), and the
resulting potential allows for a parametric separation be-
tween the electroweak vev v and the decay constant f .

At this point, we have not specified the quantum num-
bers of the scalar �, which is equivalent to specifying the
quantum numbers of h2. The possible SU(2)L represen-
tations for h2 are determined by

2⌦ 2 = 3S ⌦ 1A, 2⌦ 2 = 3⌦ 1, (8)

where the S/A subscript refers to the representation be-
ing symmetric/antisymmetric under the interchange of
the two doublets. This classification holds regardless of
the number of Higgs fields.

In a one-Higgs doublet model, the 1A representation
vanishes, and � can be a complex triplet, a real triplet,
or a real singlet:

hihj ! �ij (3S), (9)

h†⌧ah! �a (3), (10)

h†h! ⌘ (1), (11)

where ⌧a are the Pauli matrices, and we use the notation
⌘ to refer to a real singlet that carries no other charges.
If � is a real or complex SU(2)L triplet, then eq. (6) gives
rise to a tree-level quartic coupling yet protects the Higgs
mass. A complex � triplet is used in the SU(5)/SO(5)
littlest Higgs [3], and a real � triplet is present in the
SO(9)/(SO(5)⇥SO(4)) construction [9] (though this lat-
ter model has a pathology that will be understood in the
next section).

However, if � is a real singlet ⌘, then explicit com-
putation shows that eq. (6) generates a quadratically-
divergent ⌘ tadpole and Higgs mass at one-loop! (For an
example, see the appendix.)

�1f⇤2

16⇡2

✓
⌘ +

h†h

f
+ · · ·

◆
� �2f⇤2

16⇡2

✓
⌘ � h†h

f
+ · · ·

◆
(12)

Note the sign di↵erence between the two terms, which
means that the Higgs mass term cannot be forbidden by
T -parity [3, 13, 14] with �1 = �2, and a parity that en-
forces �1 = ��2 would imply no Higgs quartic coupling
in the first place. Therefore, there is no viable one-Higgs
doublet little Higgs model where a collective quartic in-
volves a real singlet ⌘. In particular, this explains why
it is impossible to add a collective quartic coupling to
the simplest little Higgs [6] without extending the Higgs
sector [15].

The reason for this pathology is that the shift sym-
metry alone does not forbid a tadpole for ⌘. If ⌘ had
non-trivial quantum numbers (such as being an SU(2)L

triplet), then these extra symmetries would forbid the ⌘
tadpole. Famously, the singlet h†h cannot be charged
under any symmetry (except a shift symmetry), and the
same holds for the singlet ⌘. To illustrate this pathology
further, we construct an explicit singlet ⌘ model which re-
alizes the full non-linear shift symmetries in appendix A.

In a two-Higgs doublet model, one can have quartics
constructed not only with SU(2)L triplets but also with
singlets. Choosing conventions where h1 and h2 have the
same hypercharge, � can a priori be a complex singlet
with or without hypercharge:
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h†1h2 ! � (1). (14)

Note however that the quartic constructed from the hy-
percharge carrying singlet |hi

1h
j
2✏ij |2 is unsatisfactory be-

cause it vanishes when the h1 and h2 vevs are aligned to
preserve electric charge. A hypercharge neutral complex
� is used in the SU(6)/Sp(6) antisymmetric condensate
model [8].

In addition, � can even be a real singlet as long as it
has an extra Z2 symmetry:

Re[h†1h2]! � (1). (15)

In this case, the symmetry

�! ��, h1 ! �h1, h2 ! h2 (16)
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How does one construct a Higgs quartic that does
not radiatively generate a quadratically-divergent Higgs
mass? In little Higgs theories, one finds a set of opera-
tors that each preserve di↵erent shift symmetries acting
on the Higgs doublet, but collectively break all the sym-
metries that protect the Higgs potential [1, 2, 3, 4, 5].
Since the quadratically-divergent diagrams only involve
one operator at a time, the shift symmetries are su�cient
to protect the Higgs mass parameter.

Concretely, in a non-linear sigma model where the
Higgs is a pseudo-Nambu-Goldstone boson (PNGB), one
näıvely expects the shift symmetry

h! h + ✏ + · · · (4)

to forbid any potential for the Higgs. But if there are
additional PNGBs � with compensating shifts
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each preserve one of the Higgs shift symmetries from
eq. (5). Taken alone, neither �i term would give a phys-
ical Higgs quartic since each individual quartic could be
removed by a �± ⌘ �±h2/f + · · · field redefinition. Col-
lectively, though, the two operators yield a Higgs quartic
after � is integrated out:

V ⇠ 4�1�2

�1 + �2
h4 + · · · . (7)

This is the form of all little Higgs quartics. A small Higgs
mass term is generated radiatively from eq. (6), and the
resulting potential allows for a parametric separation be-
tween the electroweak vev v and the decay constant f .

At this point, we have not specified the quantum num-
bers of the scalar �, which is equivalent to specifying the
quantum numbers of h2. The possible SU(2)L represen-
tations for h2 are determined by

2⌦ 2 = 3S ⌦ 1A, 2⌦ 2 = 3⌦ 1, (8)

where the S/A subscript refers to the representation be-
ing symmetric/antisymmetric under the interchange of
the two doublets. This classification holds regardless of
the number of Higgs fields.

In a one-Higgs doublet model, the 1A representation
vanishes, and � can be a complex triplet, a real triplet,
or a real singlet:

hihj ! �ij (3S), (9)

h†⌧ah! �a (3), (10)

h†h! ⌘ (1), (11)

where ⌧a are the Pauli matrices, and we use the notation
⌘ to refer to a real singlet that carries no other charges.
If � is a real or complex SU(2)L triplet, then eq. (6) gives
rise to a tree-level quartic coupling yet protects the Higgs
mass. A complex � triplet is used in the SU(5)/SO(5)
littlest Higgs [3], and a real � triplet is present in the
SO(9)/(SO(5)⇥SO(4)) construction [9] (though this lat-
ter model has a pathology that will be understood in the
next section).

However, if � is a real singlet ⌘, then explicit com-
putation shows that eq. (6) generates a quadratically-
divergent ⌘ tadpole and Higgs mass at one-loop! (For an
example, see the appendix.)
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Note the sign di↵erence between the two terms, which
means that the Higgs mass term cannot be forbidden by
T -parity [3, 13, 14] with �1 = �2, and a parity that en-
forces �1 = ��2 would imply no Higgs quartic coupling
in the first place. Therefore, there is no viable one-Higgs
doublet little Higgs model where a collective quartic in-
volves a real singlet ⌘. In particular, this explains why
it is impossible to add a collective quartic coupling to
the simplest little Higgs [6] without extending the Higgs
sector [15].

The reason for this pathology is that the shift sym-
metry alone does not forbid a tadpole for ⌘. If ⌘ had
non-trivial quantum numbers (such as being an SU(2)L

triplet), then these extra symmetries would forbid the ⌘
tadpole. Famously, the singlet h†h cannot be charged
under any symmetry (except a shift symmetry), and the
same holds for the singlet ⌘. To illustrate this pathology
further, we construct an explicit singlet ⌘ model which re-
alizes the full non-linear shift symmetries in appendix A.

In a two-Higgs doublet model, one can have quartics
constructed not only with SU(2)L triplets but also with
singlets. Choosing conventions where h1 and h2 have the
same hypercharge, � can a priori be a complex singlet
with or without hypercharge:
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2✏ij ! � (1A), (13)

h†1h2 ! � (1). (14)

Note however that the quartic constructed from the hy-
percharge carrying singlet |hi

1h
j
2✏ij |2 is unsatisfactory be-

cause it vanishes when the h1 and h2 vevs are aligned to
preserve electric charge. A hypercharge neutral complex
� is used in the SU(6)/Sp(6) antisymmetric condensate
model [8].

In addition, � can even be a real singlet as long as it
has an extra Z2 symmetry:

Re[h†1h2]! � (1). (15)

In this case, the symmetry

�! ��, h1 ! �h1, h2 ! h2 (16)
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II. COLLECTIVE QUARTICS

How does one construct a Higgs quartic that does
not radiatively generate a quadratically-divergent Higgs
mass? In little Higgs theories, one finds a set of opera-
tors that each preserve di↵erent shift symmetries acting
on the Higgs doublet, but collectively break all the sym-
metries that protect the Higgs potential [1, 2, 3, 4, 5].
Since the quadratically-divergent diagrams only involve
one operator at a time, the shift symmetries are su�cient
to protect the Higgs mass parameter.

Concretely, in a non-linear sigma model where the
Higgs is a pseudo-Nambu-Goldstone boson (PNGB), one
näıvely expects the shift symmetry

h! h + ✏ + · · · (4)

to forbid any potential for the Higgs. But if there are
additional PNGBs � with compensating shifts
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each preserve one of the Higgs shift symmetries from
eq. (5). Taken alone, neither �i term would give a phys-
ical Higgs quartic since each individual quartic could be
removed by a �± ⌘ �±h2/f + · · · field redefinition. Col-
lectively, though, the two operators yield a Higgs quartic
after � is integrated out:
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This is the form of all little Higgs quartics. A small Higgs
mass term is generated radiatively from eq. (6), and the
resulting potential allows for a parametric separation be-
tween the electroweak vev v and the decay constant f .

At this point, we have not specified the quantum num-
bers of the scalar �, which is equivalent to specifying the
quantum numbers of h2. The possible SU(2)L represen-
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⌘ to refer to a real singlet that carries no other charges.
If � is a real or complex SU(2)L triplet, then eq. (6) gives
rise to a tree-level quartic coupling yet protects the Higgs
mass. A complex � triplet is used in the SU(5)/SO(5)
littlest Higgs [3], and a real � triplet is present in the
SO(9)/(SO(5)⇥SO(4)) construction [9] (though this lat-
ter model has a pathology that will be understood in the
next section).

However, if � is a real singlet ⌘, then explicit com-
putation shows that eq. (6) generates a quadratically-
divergent ⌘ tadpole and Higgs mass at one-loop! (For an
example, see the appendix.)
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Note the sign di↵erence between the two terms, which
means that the Higgs mass term cannot be forbidden by
T -parity [3, 13, 14] with �1 = �2, and a parity that en-
forces �1 = ��2 would imply no Higgs quartic coupling
in the first place. Therefore, there is no viable one-Higgs
doublet little Higgs model where a collective quartic in-
volves a real singlet ⌘. In particular, this explains why
it is impossible to add a collective quartic coupling to
the simplest little Higgs [6] without extending the Higgs
sector [15].

The reason for this pathology is that the shift sym-
metry alone does not forbid a tadpole for ⌘. If ⌘ had
non-trivial quantum numbers (such as being an SU(2)L

triplet), then these extra symmetries would forbid the ⌘
tadpole. Famously, the singlet h†h cannot be charged
under any symmetry (except a shift symmetry), and the
same holds for the singlet ⌘. To illustrate this pathology
further, we construct an explicit singlet ⌘ model which re-
alizes the full non-linear shift symmetries in appendix A.

In a two-Higgs doublet model, one can have quartics
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same hypercharge, � can a priori be a complex singlet
with or without hypercharge:
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percharge carrying singlet |hi
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2✏ij |2 is unsatisfactory be-

cause it vanishes when the h1 and h2 vevs are aligned to
preserve electric charge. A hypercharge neutral complex
� is used in the SU(6)/Sp(6) antisymmetric condensate
model [8].

In addition, � can even be a real singlet as long as it
has an extra Z2 symmetry:
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Since the quadratically-divergent diagrams only involve
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eq. (5). Taken alone, neither �i term would give a phys-
ical Higgs quartic since each individual quartic could be
removed by a �± ⌘ �±h2/f + · · · field redefinition. Col-
lectively, though, the two operators yield a Higgs quartic
after � is integrated out:
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This is the form of all little Higgs quartics. A small Higgs
mass term is generated radiatively from eq. (6), and the
resulting potential allows for a parametric separation be-
tween the electroweak vev v and the decay constant f .

At this point, we have not specified the quantum num-
bers of the scalar �, which is equivalent to specifying the
quantum numbers of h2. The possible SU(2)L represen-
tations for h2 are determined by

2⌦ 2 = 3S ⌦ 1A, 2⌦ 2 = 3⌦ 1, (8)

where the S/A subscript refers to the representation be-
ing symmetric/antisymmetric under the interchange of
the two doublets. This classification holds regardless of
the number of Higgs fields.

In a one-Higgs doublet model, the 1A representation
vanishes, and � can be a complex triplet, a real triplet,
or a real singlet:

hihj ! �ij (3S), (9)

h†⌧ah! �a (3), (10)

h†h! ⌘ (1), (11)

where ⌧a are the Pauli matrices, and we use the notation
⌘ to refer to a real singlet that carries no other charges.
If � is a real or complex SU(2)L triplet, then eq. (6) gives
rise to a tree-level quartic coupling yet protects the Higgs
mass. A complex � triplet is used in the SU(5)/SO(5)
littlest Higgs [3], and a real � triplet is present in the
SO(9)/(SO(5)⇥SO(4)) construction [9] (though this lat-
ter model has a pathology that will be understood in the
next section).

However, if � is a real singlet ⌘, then explicit com-
putation shows that eq. (6) generates a quadratically-
divergent ⌘ tadpole and Higgs mass at one-loop! (For an
example, see the appendix.)
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Note the sign di↵erence between the two terms, which
means that the Higgs mass term cannot be forbidden by
T -parity [3, 13, 14] with �1 = �2, and a parity that en-
forces �1 = ��2 would imply no Higgs quartic coupling
in the first place. Therefore, there is no viable one-Higgs
doublet little Higgs model where a collective quartic in-
volves a real singlet ⌘. In particular, this explains why
it is impossible to add a collective quartic coupling to
the simplest little Higgs [6] without extending the Higgs
sector [15].

The reason for this pathology is that the shift sym-
metry alone does not forbid a tadpole for ⌘. If ⌘ had
non-trivial quantum numbers (such as being an SU(2)L

triplet), then these extra symmetries would forbid the ⌘
tadpole. Famously, the singlet h†h cannot be charged
under any symmetry (except a shift symmetry), and the
same holds for the singlet ⌘. To illustrate this pathology
further, we construct an explicit singlet ⌘ model which re-
alizes the full non-linear shift symmetries in appendix A.

In a two-Higgs doublet model, one can have quartics
constructed not only with SU(2)L triplets but also with
singlets. Choosing conventions where h1 and h2 have the
same hypercharge, � can a priori be a complex singlet
with or without hypercharge:
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Note however that the quartic constructed from the hy-
percharge carrying singlet |hi

1h
j
2✏ij |2 is unsatisfactory be-

cause it vanishes when the h1 and h2 vevs are aligned to
preserve electric charge. A hypercharge neutral complex
� is used in the SU(6)/Sp(6) antisymmetric condensate
model [8].

In addition, � can even be a real singlet as long as it
has an extra Z2 symmetry:

Re[h†1h2]! � (1). (15)

In this case, the symmetry

�! ��, h1 ! �h1, h2 ! h2 (16)
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II. COLLECTIVE QUARTICS

How does one construct a Higgs quartic that does
not radiatively generate a quadratically-divergent Higgs
mass? In little Higgs theories, one finds a set of opera-
tors that each preserve di↵erent shift symmetries acting
on the Higgs doublet, but collectively break all the sym-
metries that protect the Higgs potential [1, 2, 3, 4, 5].
Since the quadratically-divergent diagrams only involve
one operator at a time, the shift symmetries are su�cient
to protect the Higgs mass parameter.

Concretely, in a non-linear sigma model where the
Higgs is a pseudo-Nambu-Goldstone boson (PNGB), one
näıvely expects the shift symmetry

h! h + ✏ + · · · (4)

to forbid any potential for the Higgs. But if there are
additional PNGBs � with compensating shifts
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each preserve one of the Higgs shift symmetries from
eq. (5). Taken alone, neither �i term would give a phys-
ical Higgs quartic since each individual quartic could be
removed by a �± ⌘ �±h2/f + · · · field redefinition. Col-
lectively, though, the two operators yield a Higgs quartic
after � is integrated out:

V ⇠ 4�1�2

�1 + �2
h4 + · · · . (7)

This is the form of all little Higgs quartics. A small Higgs
mass term is generated radiatively from eq. (6), and the
resulting potential allows for a parametric separation be-
tween the electroweak vev v and the decay constant f .

At this point, we have not specified the quantum num-
bers of the scalar �, which is equivalent to specifying the
quantum numbers of h2. The possible SU(2)L represen-
tations for h2 are determined by

2⌦ 2 = 3S ⌦ 1A, 2⌦ 2 = 3⌦ 1, (8)

where the S/A subscript refers to the representation be-
ing symmetric/antisymmetric under the interchange of
the two doublets. This classification holds regardless of
the number of Higgs fields.

In a one-Higgs doublet model, the 1A representation
vanishes, and � can be a complex triplet, a real triplet,
or a real singlet:

hihj ! �ij (3S), (9)

h†⌧ah! �a (3), (10)

h†h! ⌘ (1), (11)

where ⌧a are the Pauli matrices, and we use the notation
⌘ to refer to a real singlet that carries no other charges.
If � is a real or complex SU(2)L triplet, then eq. (6) gives
rise to a tree-level quartic coupling yet protects the Higgs
mass. A complex � triplet is used in the SU(5)/SO(5)
littlest Higgs [3], and a real � triplet is present in the
SO(9)/(SO(5)⇥SO(4)) construction [9] (though this lat-
ter model has a pathology that will be understood in the
next section).

However, if � is a real singlet ⌘, then explicit com-
putation shows that eq. (6) generates a quadratically-
divergent ⌘ tadpole and Higgs mass at one-loop! (For an
example, see the appendix.)
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Note the sign di↵erence between the two terms, which
means that the Higgs mass term cannot be forbidden by
T -parity [3, 13, 14] with �1 = �2, and a parity that en-
forces �1 = ��2 would imply no Higgs quartic coupling
in the first place. Therefore, there is no viable one-Higgs
doublet little Higgs model where a collective quartic in-
volves a real singlet ⌘. In particular, this explains why
it is impossible to add a collective quartic coupling to
the simplest little Higgs [6] without extending the Higgs
sector [15].

The reason for this pathology is that the shift sym-
metry alone does not forbid a tadpole for ⌘. If ⌘ had
non-trivial quantum numbers (such as being an SU(2)L

triplet), then these extra symmetries would forbid the ⌘
tadpole. Famously, the singlet h†h cannot be charged
under any symmetry (except a shift symmetry), and the
same holds for the singlet ⌘. To illustrate this pathology
further, we construct an explicit singlet ⌘ model which re-
alizes the full non-linear shift symmetries in appendix A.

In a two-Higgs doublet model, one can have quartics
constructed not only with SU(2)L triplets but also with
singlets. Choosing conventions where h1 and h2 have the
same hypercharge, � can a priori be a complex singlet
with or without hypercharge:
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j
2✏ij ! � (1A), (13)

h†1h2 ! � (1). (14)

Note however that the quartic constructed from the hy-
percharge carrying singlet |hi

1h
j
2✏ij |2 is unsatisfactory be-

cause it vanishes when the h1 and h2 vevs are aligned to
preserve electric charge. A hypercharge neutral complex
� is used in the SU(6)/Sp(6) antisymmetric condensate
model [8].

In addition, � can even be a real singlet as long as it
has an extra Z2 symmetry:

Re[h†1h2]! � (1). (15)

In this case, the symmetry

�! ��, h1 ! �h1, h2 ! h2 (16)
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mass? In little Higgs theories, one finds a set of opera-
tors that each preserve di↵erent shift symmetries acting
on the Higgs doublet, but collectively break all the sym-
metries that protect the Higgs potential [1, 2, 3, 4, 5].
Since the quadratically-divergent diagrams only involve
one operator at a time, the shift symmetries are su�cient
to protect the Higgs mass parameter.

Concretely, in a non-linear sigma model where the
Higgs is a pseudo-Nambu-Goldstone boson (PNGB), one
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each preserve one of the Higgs shift symmetries from
eq. (5). Taken alone, neither �i term would give a phys-
ical Higgs quartic since each individual quartic could be
removed by a �± ⌘ �±h2/f + · · · field redefinition. Col-
lectively, though, the two operators yield a Higgs quartic
after � is integrated out:

V ⇠ 4�1�2

�1 + �2
h4 + · · · . (7)

This is the form of all little Higgs quartics. A small Higgs
mass term is generated radiatively from eq. (6), and the
resulting potential allows for a parametric separation be-
tween the electroweak vev v and the decay constant f .

At this point, we have not specified the quantum num-
bers of the scalar �, which is equivalent to specifying the
quantum numbers of h2. The possible SU(2)L represen-
tations for h2 are determined by

2⌦ 2 = 3S ⌦ 1A, 2⌦ 2 = 3⌦ 1, (8)

where the S/A subscript refers to the representation be-
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the two doublets. This classification holds regardless of
the number of Higgs fields.
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or a real singlet:
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where ⌧a are the Pauli matrices, and we use the notation
⌘ to refer to a real singlet that carries no other charges.
If � is a real or complex SU(2)L triplet, then eq. (6) gives
rise to a tree-level quartic coupling yet protects the Higgs
mass. A complex � triplet is used in the SU(5)/SO(5)
littlest Higgs [3], and a real � triplet is present in the
SO(9)/(SO(5)⇥SO(4)) construction [9] (though this lat-
ter model has a pathology that will be understood in the
next section).

However, if � is a real singlet ⌘, then explicit com-
putation shows that eq. (6) generates a quadratically-
divergent ⌘ tadpole and Higgs mass at one-loop! (For an
example, see the appendix.)
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Note the sign di↵erence between the two terms, which
means that the Higgs mass term cannot be forbidden by
T -parity [3, 13, 14] with �1 = �2, and a parity that en-
forces �1 = ��2 would imply no Higgs quartic coupling
in the first place. Therefore, there is no viable one-Higgs
doublet little Higgs model where a collective quartic in-
volves a real singlet ⌘. In particular, this explains why
it is impossible to add a collective quartic coupling to
the simplest little Higgs [6] without extending the Higgs
sector [15].

The reason for this pathology is that the shift sym-
metry alone does not forbid a tadpole for ⌘. If ⌘ had
non-trivial quantum numbers (such as being an SU(2)L

triplet), then these extra symmetries would forbid the ⌘
tadpole. Famously, the singlet h†h cannot be charged
under any symmetry (except a shift symmetry), and the
same holds for the singlet ⌘. To illustrate this pathology
further, we construct an explicit singlet ⌘ model which re-
alizes the full non-linear shift symmetries in appendix A.

In a two-Higgs doublet model, one can have quartics
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same hypercharge, � can a priori be a complex singlet
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cause it vanishes when the h1 and h2 vevs are aligned to
preserve electric charge. A hypercharge neutral complex
� is used in the SU(6)/Sp(6) antisymmetric condensate
model [8].
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on the Higgs doublet, but collectively break all the sym-
metries that protect the Higgs potential [1, 2, 3, 4, 5].
Since the quadratically-divergent diagrams only involve
one operator at a time, the shift symmetries are su�cient
to protect the Higgs mass parameter.
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each preserve one of the Higgs shift symmetries from
eq. (5). Taken alone, neither �i term would give a phys-
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removed by a �± ⌘ �±h2/f + · · · field redefinition. Col-
lectively, though, the two operators yield a Higgs quartic
after � is integrated out:
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h4 + · · · . (7)

This is the form of all little Higgs quartics. A small Higgs
mass term is generated radiatively from eq. (6), and the
resulting potential allows for a parametric separation be-
tween the electroweak vev v and the decay constant f .

At this point, we have not specified the quantum num-
bers of the scalar �, which is equivalent to specifying the
quantum numbers of h2. The possible SU(2)L represen-
tations for h2 are determined by

2⌦ 2 = 3S ⌦ 1A, 2⌦ 2 = 3⌦ 1, (8)

where the S/A subscript refers to the representation be-
ing symmetric/antisymmetric under the interchange of
the two doublets. This classification holds regardless of
the number of Higgs fields.

In a one-Higgs doublet model, the 1A representation
vanishes, and � can be a complex triplet, a real triplet,
or a real singlet:

hihj ! �ij (3S), (9)

h†⌧ah! �a (3), (10)

h†h! ⌘ (1), (11)

where ⌧a are the Pauli matrices, and we use the notation
⌘ to refer to a real singlet that carries no other charges.
If � is a real or complex SU(2)L triplet, then eq. (6) gives
rise to a tree-level quartic coupling yet protects the Higgs
mass. A complex � triplet is used in the SU(5)/SO(5)
littlest Higgs [3], and a real � triplet is present in the
SO(9)/(SO(5)⇥SO(4)) construction [9] (though this lat-
ter model has a pathology that will be understood in the
next section).

However, if � is a real singlet ⌘, then explicit com-
putation shows that eq. (6) generates a quadratically-
divergent ⌘ tadpole and Higgs mass at one-loop! (For an
example, see the appendix.)

�1f⇤2

16⇡2

✓
⌘ +

h†h

f
+ · · ·

◆
� �2f⇤2

16⇡2

✓
⌘ � h†h

f
+ · · ·

◆
(12)

Note the sign di↵erence between the two terms, which
means that the Higgs mass term cannot be forbidden by
T -parity [3, 13, 14] with �1 = �2, and a parity that en-
forces �1 = ��2 would imply no Higgs quartic coupling
in the first place. Therefore, there is no viable one-Higgs
doublet little Higgs model where a collective quartic in-
volves a real singlet ⌘. In particular, this explains why
it is impossible to add a collective quartic coupling to
the simplest little Higgs [6] without extending the Higgs
sector [15].

The reason for this pathology is that the shift sym-
metry alone does not forbid a tadpole for ⌘. If ⌘ had
non-trivial quantum numbers (such as being an SU(2)L

triplet), then these extra symmetries would forbid the ⌘
tadpole. Famously, the singlet h†h cannot be charged
under any symmetry (except a shift symmetry), and the
same holds for the singlet ⌘. To illustrate this pathology
further, we construct an explicit singlet ⌘ model which re-
alizes the full non-linear shift symmetries in appendix A.

In a two-Higgs doublet model, one can have quartics
constructed not only with SU(2)L triplets but also with
singlets. Choosing conventions where h1 and h2 have the
same hypercharge, � can a priori be a complex singlet
with or without hypercharge:

hi
1h

j
2✏ij ! � (1A), (13)

h†1h2 ! � (1). (14)

Note however that the quartic constructed from the hy-
percharge carrying singlet |hi

1h
j
2✏ij |2 is unsatisfactory be-

cause it vanishes when the h1 and h2 vevs are aligned to
preserve electric charge. A hypercharge neutral complex
� is used in the SU(6)/Sp(6) antisymmetric condensate
model [8].

In addition, � can even be a real singlet as long as it
has an extra Z2 symmetry:

Re[h†1h2]! � (1). (15)

In this case, the symmetry

�! ��, h1 ! �h1, h2 ! h2 (16)

Rho Parameter Dangerous Singlet

Thaler/Schmaltz

Vanishes in charge preserving direction

New non-trivial symmetries 
possible!
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New symmetries

• A complex singlet with a PQ charge SU(6)/
Sp(6) (Low, Skiba, Tucker-Smith, Phys.Rev. D66 (2002) 072001, Gregoire, Tucker-Smith, 
Wacker, Phys.Rev. D69 (2004) 115008)

• A new parity:

2
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Aside on Little Higgs 
Model Building 

• SO(9)/(SO(5)xSO(4)) (S. Chang hep-ph/
0306034) was designed to preserved 
custodial SU(2).  However, it contains a 
dangerous singlet.

• A relatively straightforward extension of 
this model a 2 HDM with a SO(10)/
SO(5)xSO(5) structure solves this problem 
(Kearney, AP, Thaler, to appear). 
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How to build a Little 
Higgs model

• To avoid quadratically divergent 
contributions from the EW sector, need 
two weakly gauged subgroups G1, G2

• Each Gi commutes with a different 
subgroup (X1,2 ) acting non-linearly on the 
Higgs(es).  Gauging one does not break all 
shift symmetries.  

• Want Xi to contain Gj. This ensures that a 
single gauge coupling does not destroy all 
protective symmetries.
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Some LH options
Littlest Higgs

 SU(5)/SO(5)
1 HDM

Gi = SU(2) x U(1)
Xi = SU(3)

LH from Anti-symmetric 
Condensate

SU(6)/Sp(6)
2 HDM

Gi = SU(2) x U(1)
Xi = SU(4)

Custodial LH
SO(9)/(SO(4)xSO(5))

1 HDM
G1=SU(2)xU(1)

G2=SO(4)
Xi=SO(5)

Custodial 2HDM 
(Kearney, AP, Thaler)

SO(10)/(SO(5)xSO(5))
2 HDM

G1=SU(2)xU(1)
G2=SO(4)
Xi=SO(6)“Dangerous”
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Two classes of exotic 
decays are motivated:

may provide best avenue for observing additional scalars. This approach shares some intellec-

tual ancestry with attempts to use supersymmetric particle decays to Higgs bosons [? ? ], as

well as a studies designed to pick out the Standard Model Higgs boson (using jet substructure

techniques) from top partner decays [1]. Since they may exhibit significant couplings to top

quarks, in some cases there may be a chance to observe the production of these new scalars

in production in association with top quarks cite stu↵ . As part of our discussion, we will

revisit the possibility of observing associated production of gb ! tH+ ! ttb. Consistent

with previous claims in the literature, we conclude that this search appears dif-

ficult. We would anticipate a similarly challenging result for any other PNGBs

that might be present.

Little Higgs (LH) models [2, 3] are especially well-motivated to contain the necessary

ingredients for the search discussed here: top partners and new scalars. In fact, LH models

often contain not only fermionic top partners to cancel top contributions to m2h, but ad-

ditional top partners beyond these cancellons, perhaps because of an underlying custodial

symmetry or an enhanced global symmetry of the strong dynamics. These symmetries re-

late can relate the cancellons to more exotic top-like states. So, while the phenomenology

discussed here may be relevant to the particles canceling the quadratic divergence, it could

just as easily apply to these exotics. Furthermore, LH models are likely to have a scalar

sector that extends beyond a single Higgs multiplet. This scalars can be present for two

reasons. First, the quartic potential for the Higgs boson is typically generated by integrating

out pNGBs, we label these fields ”quarticons”. Second, LH model building indicates that

there are compelling reasons to expect that any realistic little Higgs model will require two

Higgs doublets[4]. So, the topology we discuss here can arise from either

T ! quarticon + sm T ! sm + 2nd Higgs doublet (1.1)

While we are motivated by Little Higgs models, we emphasize that the phenomenology

discussed in this paper is more general. It is valid for any theory with top partners and

extended Higgs sectors. In fact, the new quarks need not even strictly be top partners;

any new vector-like quarks are su�cient, as long as the dominant mixing is with the third

generation. For the majority of the paper, we discuss the decay of a top partner to a heavy

charged Higgs via T ! bH± with H± ! tb, but we also comment on the possibility of decays

to neutral scalars such as T ! t�0, �0 ! bb.

Should these exotic top partner decays be observed, they will become an important

window on to the structure of new physics at the TeV scale.

The rest of the paper is organized as follows: In section 2, we review the di�culty of

observing H± in pp ! tH±. In section 3, we present a strategy for observing H± in the

decay T ! bH±. We also discuss the applicability of this strategy to searching for other

scalar states that may be produced in top partners decays, such as T ! t�0, �0 ! bb. In

section 5, we conclude.

– 2 –
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T ! t+ (A,H)

T ! b+H±

T 0 ! b+ �±

T 0 ! t+ �0
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window on to the structure of new physics at the TeV scale.

The rest of the paper is organized as follows: In section 2, we review the di�culty of

observing H± in pp ! tH±. In section 3, we present a strategy for observing H± in the

decay T ! bH±. We also discuss the applicability of this strategy to searching for other

scalar states that may be produced in top partners decays, such as T ! t�0, �0 ! bb. In

section 5, we conclude.

– 2 –

T ! t+ (A,H)

T ! b+H±

T 0 ! b+ �±

T 0 ! t+ �0

Monday, April 22, 13



Where is the second 
Higgs doublet?

• Clues:

• Approximately Standard Model Higgs

• Lack of signals in flavor physics (e.g. b to s 
gamma). 
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How to see this second 
Higgs multiplet?

• One approach: associated production with 
a top quark 

• g b  → t H±

• In this heavy charged Higgs regime, decays 
are likely dominated by (tb)

• Large backgrounds from tt + nj, ttbb

• charm mistag important

• Looks Challenging

(Moretti, Roy)

(Kearney, AP, Thaler)
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Can we see charged 
Higgses in Heavy Top 

Decays?

T →b H±

cf. Kribs, Martin, Roy, Spannowsky (0912.4731) 
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Production Cross Section
LHC, s = 14 TeV
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Finding the events

• Dig out from SM backgrounds

• tt + nj

• tt +bb

• Dig out from Little higgs “backgrounds.”

• MadGraph, MLM matching, with Pythia to 
DELPHES.
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Idea

• Assume discovered, hopefully soon in T to 
b W, e.g.

• Can we test for the presence of these 
exotic decays?

T ! (bW ) =
1� ✏

2

T ! (th) =
1� ✏

4

T ! (tZ) =
1� ✏

4
T ! (bH±) = ✏
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Our Topology

di↵erence: one b-pair is constrained to have invariant mass mbb = mh or mZ . We discuss

possible signals and how to suppress the various backgrounds in the next subsection.

3.1 Signals (and Backgrounds) from Top Partner Decays and Bottom-Rich Stan-

dard Model Backgrounds

Like the Standard Model top fields, top partners are generally electroweak singlets or doublets,

permitting renormalizable Yukawa couplings between a top partner, the Higgs field, and

a Standard Model top field. Consequently, top partners will typically exhibit decays to

Standard Model particles T ! bW, tZ and th through these couplings. Decays involving

non-Standard Model particles, such as T ! bH±, are generally expected to be subdominant

due to phase space suppression. The exclusively Standard Model decay modes have been

extensively studied as possible discovery channels for top partners, and limits have been set

[16, 25]. We envision a scenario wherein the top partner is discovered, hopefully soon, via

one of these modes. We then have the opportunity to search for subdominant decays.

In fact, prompt decays to Standard Model states o↵er a potential handle for separat-

ing signal from background in searches for subdominant decays. In pair-production of top

partners, the reconstruction of a top partner from a prompt decay such as T ! bW ! bjj

can be used to reduce Standard Model backgrounds (notably, events with lighter Standard

Model tops) and “tag” events as potential top partner pair events. One can then search for

subdominant modes in the decay of the second top partner in the event. Motivated by this

reasoning, we consider searching for H± in the channel

pp ! (T ! bW⌥ ! bjj)(T ! bH± ! btb ! bbb`±⌫). (3.1)

As in the top quark associated production search, the single lepton channel reduces combina-

toric background, and allows for the potential reconstruction of a second top partner in the

event. For very large mT ⇠> 1 TeV, single top partner production may dominate [26], favoring

alternative search strategies.

The dominant Standard Model backgrounds are ttbb and tt+jets with two light jets faking

b’s. However, the presence of four relatively hard b-jets in the signal means that a requirement

of 4 b-tagged jets can be used (in addition to top partner reconstruction) to greatly suppress

these backgrounds. The low fake rate suppresses tt+jets, whereas ttbb is suppressed as the

additional b’s generally come from gluon splitting, such that frequently either one b-jet is

soft, causing it to fail the minimum pT,j requirement, or the b’s are highly collimated and

consequently resolved into a single jet. High b-multiplicity requirements have similarly been

applied to reduce tt+jets and ttbb backgrounds in the context of SUSY stop searches [27] and

searches for top partners decaying to exclusively Standard Model states [17].

Aside from Standard Model backgrounds, there are also backgrounds due to other top

partner decays that yield the same final state, notably T ! th, tZ ! tbb. However, these

events exhibit a key kinematic di↵erence in that one b-pair is constrained to have invariant

mass mbb = mh or mZ . Consequently, one can use a cut on the minimum mbb in the event

– 7 –

Keep in mind: mT = 700 GeV, mH+ = 500 GeV 
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Basic idea

• Four hard b jets (a combinatoric challenge!)

• reduce gluon splitting b’s

• One very hard b jet  (160 GeV)

• A large overall effective mass  (1.2 TeV)

Very helpful in getting away from 
Standard Model Backgrounds
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Keep in mind: mT = 700 GeV, mH+ = 500 GeV 

b

W

b
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Further cuts

• mjj ~ MW (within 20 GeV, also close in delta R)

• MbW ~ 700 GeV.  
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Getting Away from 
New “Backgrounds”

• Other heavy top decays (to Z, W, h) are 
“backgrounds” to our signal.

• In all cases, marked by a relatively low 
invariant mass object (compared to charged 
Higgs)

• Consider (mbb)min= the minimum 
invariant mass of b pairs in the event
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“Background” Distributions

T ! bW ! bjj

T ! bh ! tbb ! 3b+ l⌫

T to th

T ! bW ! bjj

T ! bZ ! tbb ! 3b+ l⌫
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Signal

T ! bW ! bjj

T ! bH± ! tbb ! 3b+ l⌫

T to th

“Background’

T ! bW ! bjj

T ! th ! tbb ! 3b+ l⌫

) [GeV]
bb

min(m
0 50 100 150 200 250 300 350

 [G
eV

]
bj

j
m

200

300

400

500

600

700

800

900

1000

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

-310×

) [GeV]
bb

min(m
0 50 100 150 200 250 300 350

 [G
eV

]
T

bb
bl

E
m

0

200

400

600

800

1000

1200

1400

0

0.05

0.1

0.15

0.2

0.25

-310×

) [GeV]
bb

min(m
0 50 100 150 200 250 300 350

m
ea

n(
m

_T
) [

G
eV

]

0

200

400

600

800

1000

1200

1400

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

-310×T
) vs mean m

bb
min(m

) [GeV]
bb

min(m
0 50 100 150 200 250 300 350

 [G
eV

]
bj

j
m

200

300

400

500

600

700

800

900

1000

0

0.1

0.2

0.3

0.4

0.5

-310×

) [GeV]
bb

min(m
0 50 100 150 200 250 300 350

 [G
eV

]
T

bb
bl

E
m

0

200

400

600

800

1000

1200

1400

0

0.1

0.2

0.3

0.4

0.5

-310×

) [GeV]
bb

min(m
0 50 100 150 200 250 300 350

m
ea

n(
m

_T
) [

G
eV

]

0

200

400

600

800

1000

1200

1400

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-310×T
) vs mean m

bb
min(m

Monday, April 22, 13



On (mbb)min and SM 
backgrounds

to reject these decays. Furthermore, such a cut can also prove e↵ective at rejecting ttjj and

ttbb events. For the ttbb background, this is because the relatively collimated b’s from gluon

splitting can exhibit low invariant mass. For the tt+jets background, consider the invariant

mass of the b quark and one of the other quarks q from the hadronic top decay. Then, if q0

is the remaining quark in the decay (i.e. t ! bqq0), we have

m2
bq = (pb + pq)

2 = (pt � pq0)
2 = m2

t � 2pt · pq0 = m2
t � 2mtEq0 (3.2)

where Eq0 is the energy of q0 in the rest frame of the top quark. As 0  Eq0  mt
2 , mbq  mt.

Consequently, if either of fake b-jets is a jet arising from hadronic top decay, the event will

contain a b-jet pair with mbb . mt (of course, if both fake b-jets arise from hadronic top decay,

then there will be a b-jet pair with mbb = mW ). To avoid the presence of a low invariant mass

b-jet pair, the jets mis-tagged in tt+jets events must arise from QCD processes, representing

fewer combinatoric mis-tagging possibilities. As a result, a su�ciently harsh cut on the

minimum mbb can serve to reject Standard Model backgrounds as well as top partner decays

that yield the same bbbbjj`⌫ final state.

3.2 Simulation Framework

We use the same general simulation framework and Standard Model background samples as

described in Sec. 2.1, with the possible exception of allowing smaller pT,µ? . For top

partner signals and backgrounds, we generated samples of

pp ! TT + nj ! bW⌥bH±, (3.3)

pp ! TT + nj ! bW⌥th, (3.4)

pp ! TT + nj ! bW⌥tZ (3.5)

with n = 0, 1, 2 in MadGraph with subsequent decays and hadronization carried out in

Pythia. For mT = 700 GeV, a representative value that exceeds current bounds [16, 25, 28]

but is not so high as to create tensions with naturalness, the matched cross section is

�(pp ! TT + nj,mT = 700 GeV) = 470 fb (3.6)

Using unmatched samples, we have confirmed that both simulating the full TT ! bW⌥X !
bbbbjj`⌫ decay in MadGraph and simulating TT ! bW⌥X in MadGraph and subsequent

decays in Pythia yields similar results, indicating that the latter method should indeed be

su�cient for the matched samples.

3.3 Selection Criteria

The signal is characterized by a high multiplicity of relatively hard jets, including a high-

multiplicity of b-jets, a lepton and missing energy. The hardest b will be quite hard as it

likely arises from the prompt T ! bW± decay. Note that, as the neutrino arises at the end

of a longer decay chain, the signal is not characterized by particularly large missing energy.

We first perform the following basic cuts to select out hard events of this type:

– 8 –

Gluonic splitting can give low invariant mass b pairs
ttbb:

ttjj:

Totally obvious: If both faking jets come 
from a W, then this will help.

Pretty obvious: If one faking jets come from a W, 
then this will help.

b

W
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Background Distributions

ttjj

ttbb

We 
discovered 
the W in 

fakes.
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Figure 3: Plot of mbb for pair of b’s out of {b2, b3, b4} excluding bi that gives mimimum���mbi`/ET
�mt

���, taking mT = 700 GeV,mH± = 500 GeV, ✏ = 0.16. For these values, the b’s

from T ! H±b ! bbt are constrained to have mbb  460 GeV. Such an edge could in

principle be used to determine mH± , although this approach is likely infeasible for general

comment or approximate L we expect would be needed? .

mT mH± E�ciency ✏ (S/
p
B = 3) ✏ (S/

p
B = 5)

700

400 4.06E-3 0.09 0.16

500 4.16E-3 0.09 0.16

600 2.18E-3 0.19 0.40

Table 3: E�ciencies for passing the given selection criteria, and corresponding values of ✏

yielding S/
p
B = 3 and 5 with the branching ratios described above for several representative

values of mH± .

process to pass the selection criteria falls because the b quark from T ! bH± becomes softer,

increasingly the likelihood of an event having min(mbb) < 150 GeV. Thus, in these regions of

parameter space, a larger T ! bH± branching ratio is required for this to be a viable search

strategy – unfortunately, also in these regions, the phase space suppression of T ! bH± will

be greater, likely reducing this branching ratio. I am not sure I have anything more

intelligent to say here than that search strategy will likely be fruitless in this

regime, which should be obvious.

3.5 Applicability to Other BSM Scalar States

The strategy outlined above is clearly suitable for searching for any charged scalars '± pro-

duced in top partner decays T ! b'± with '± ! tb. However, it is also applicable to

heavier neutral scalar states '0 produced via T ! t'0 and decaying as '0 ! bb (supposing

m'0 > 150 GeV). While one could imagine other dedicated searches for such a '0, the search

strategy provided already for H± would at least uncover an excess. E�ciencies for several
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On the Charged Higgs

• Can go after reconstruction of the charged 
Higgs boson resonance in (tb)

• Can look for an edge in the mbb distribution 
at 

sure what the correct citation for this is – perhaps Lee, Quigg and Thacker, which

I’ve cited here? [29], and subdominantly (with branching ratio ✏) to bH±. In this case,

using the e�ciencies given in table 2 for mT = 700 GeV,mH± = 500 GeV, we find that

✏ =

(
0.09 for S/

p
B = 3

0.16 for S/
p
B = 5

(3.9)

with L = 300 fb�1 of integrated data, indicating that this channel is viable even for relatively

small T ! bH± branching ratios. In realistic 2HDMs with fermionic top partners, such

as the “Bestest Little Higgs” [30], a wide variety of decay branching ratios are possible for

the various top partners in di↵erent regions of parameter space, making this channel worthy

of exploration if fermionic top partners are discovered (for a sense of the various branching

ratios possible in the “Bestest Little Higgs,” see [31]). While similar caveats to those given

in Sec. 2.3 about the importance of NLO QCD corrections to the tt+jets cross section apply,

there will also be analogous corrections to the top partner pair production cross section. In

fact, �NLO(pp ! TT ) ⇡ 600 fb for mT = 700 GeV, so K ⇡ 1.3 should be applied for the

top partner pair production processes as well as for tt+jets. Thus, taking into account NLO

QCD corrections extends the reach of this search to marginally smaller ✏.

One unfortunate drawback of this strategy is that, due to the appreciable standard model

background from top quarks, relatively harsh cuts must be used and so the number of events

passing is likely to be small – for instance, with ✏ = 0.16 in the example above, S = 11.7

and B = 5.4 with 300 fb�1. This would preclude the observation of, e.g., a resonance peak

at mtb = mH± . Multivariate techniques may extend the discovery potential of this search,

but are unlikely to increase event yields su�ciently to allow for the determination of mH± .

However, with su�cient data, there are numerous methods through which the charged Higgs

mass could be extracted from this channel. A complementary approach to accessing the H±

mass is via the edge in the mbb distribution for the bs produced in the decay T ! H±b ! tbb,

mbb  mT

s

1� m2
H±

m2
T

s

1� m2
t

m2
H±

. (3.10)

This, too is likely to be challenging due to small statistics, but given lighter top partners, a

su�ciently large data set, or generous branching ratios, it could be worth pursuing further.

By constructing an mbibj distribution for i, j 2 {2, 3, 4} and excluding the k 2 {2, 3, 4} which

gives mbk`/ET
closest to mt, it could be possible to use this edge to determine mH± . A sample

distribution is shown for mT = 700 GeV, mH± = 500 GeV and ✏ = 0.16 in Fig. 3. For these

values, mbb  460 GeV. Unlike attempting to observe a resonance in an mtb distribution,

the mbb distribution has the advantage of not being subject to combinatoric ambiguity once

mbk`/ET
⇡ mt has been used to identify the bottom arising from the leptonic top quark decay.

E�ciencies for passing the given selection criteria, and corresponding values of ✏ yielding

S/
p
B = 3 and 5 with the branching ratios described above, are given in table 3 for several

representative values of mH± and mT? . For mH± ⇠< mT , the e�ciency for the signal

– 12 –

T
b

b

t
H+

Monday, April 22, 13



Edge Plot

14 TeV

Preliminary
Kearney, AP, Thaler

Use the b’s 
that don’t give 

the best mT ⇡ mb`⌫

=.1✏
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Other Quarticons?

• Clearly 

• Will catch 

T ! b�±

T ! t�0 ! tbb with this analysis, too.
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Conclusions
• Little Higgs theories (or more generally, 

Higgs as a pNGB) remain a possibility 
worth hunting for if naturalness is the right 
guide.

• The minimal searches (T to bW, tZ, th) are 
useful, but need not be the whole story

• There can be many top partners with 
interesting phenomenology.  Discovery and 
determination of branching ratios can be an 
important window on to the physics of the 
symmetry breaking.
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